6476
J. S. Yadav et al. / Tetrahedron Letters 45 (2004) 6475–6476
bafilomycin A1 are in progress and the results will be
published in due course.
O
O
O
b,c
a
HO
O
O
Acknowledgements
OBn
OBn
4
3
2
OBn
K.B.R. thanks UGC, New Delhi for the award of a fel-
lowship.
e,f
g,h
d
OTs OBn
O
O
OH OBn OH OH
References and notes
6
5
1. (a) Cortes, J.; Wiesman, K. E. H.; Roberts, G. A.; Brown,
M. J. B.; Staunton, J.; Leadlay, P. F. Science 1995, 268,
1487; (b) Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.;
Khosla, C. J. Am. Chem. Soc. 1994, 116, 11612; (c)
Gerlitz, M.; Hammann, P.; Thiericker, R.; Rohr, J. J. Org.
Chem. 1992, 57, 4030.
2. Endo, J. A. J. Med. Chem. 1985, 28, 401.
3. Honda, T. J. Chem. Soc., Perkin Trans. 1 1990, 1733.
4. Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett. 1996,
18, 1969.
j,k
i
CHO
OBn OH
OBn OH OH
8
7
O
O
l
CO2Me
OBn OH
OH
9
1
5. Cavil, G. W. K.; Clark, D. V.; Whitefield, F. B. Aust. J.
Chem. 1968, 21, 2819.
Scheme 1. Reagents and conditions: (a) (ꢀ)-Ipc2BH, ꢀ23°C, THF,
24h, then 3N NaOH, 30% H2O2, rt, 6h, 95%. (b) PCC, DCM, rt, 3h,
94%. (c) m-CPBA, NaHCO3, DCM, rt, 10h, 88%. (d) LAH, THF,
0°C–rt, 4h, 85%. (e) 2,2-DMP, CSA, acetone, 3h, 73%. (f) TsCl, NEt3,
DMAP, DCM, 95%. (g) LAH, THF, reflux, 3h, 92%. (h) CSA,
MeOH, 2h, rt, 88%. (i) IBX, DMSO, DCM, 0°C–rt, 3h, 83%. (j)
NaClO2, NaH2PO4Æ2H2O, DMSO, H2O, 30min. (k) CH2N2, Et2O,
30min, yield 85% from 8. (l) H2/Pd(OH)2, EtOH, rt, 1h, 93%.
6. Laurence, B. R. J. Chem. Soc., Chem. Commun. 1982, 59.
7. Bindseil, K. V.; Zeeck, A. Helv. Chim. Acta 1993, 76, 150.
8. (a) Hanefeld, U.; Hooper, A. M.; Staunton, J. Synthesis
1999, 401; (b) Chakraborty, T. K.; Tapadar, S. Tetrahe-
dron Lett. 2003, 44, 2541; (c) Dias, L. C.; Steil, L. J.;
Vasconcelos, V. de A. Tetrahedron: Asymmetry 2004, 15,
147; (d) Csa˜k, A. G.; Mba, M.; Plumet, J. Synlett 2003,
2092.
9. Fournier, L.; Gaudel-sin, A.; Kocienski, P. J.; Pons, J.-M.
Synlett 2003, 107.
10. Toshima, K.; Yamaguchi, H.; Jyojima, T.; Noguchi, Y.;
Nakata, M.; Matsumura, M. Tetrahedron Lett. 1996, 37,
1073, and references cited therein.
11. Yadav, J. S.; Rao, C. S.; Chandrashekar, S.; Ramarao, A.
V. Tetrahedron Lett. 1995, 36, 7717.
12. (a) Yadav, J. S.; Abraham, S.; Reddy, M. M.; Sabitha, G.;
Sankar, A. R.; Kunwar, A. C. Tetrahedron Lett. 2001, 42,
4713; (b) Yadav, J. S.; Abraham, S.; Reddy, M. M.;
Sabitha, G.; Sankar, A. R.; Kunwar, A. C. Tetrahedron
Lett. 2002, 43, 3453.
aldehyde 8, which was characterized by the presence of
an aldehyde proton at d 9.80 in the H NMR spectrum.
1
The aldehyde was converted into its methyl ester 10 by
oxidation using NaClO2, NaH2PO4Æ2H2O in DMSO fol-
lowed by in situ esterification of the resulting acid using
diazomethane. Finally, hydrogenation using H2 on
Pd(OH)2 in EtOH at rt resulted in smooth removal of
the Bn protecting group and concomitant lactonization
afforded (+)-prelactone B 1 as a crystalline solid (mp
97–98°C, lit.8c mp 97–98°C). The synthetic substance
13. Selected physical data for 1. Rf =0.45 (silica, 60% EtOAc
25
D
exhibited spectral properties13 (1H, 13C NMR, IR, mass)
in petroleum ether); ½a þ38:7 (c=0.75, MeOH); mp 97–
25
D
98°C; IR (KBr) mmax 3475, 2969, 2925, 1718, 1465, 1274,
and specific rotation, ½a þ38:7 (c=0.75, MeOH) {lit.8c
1
1004cmꢀ1 ; H NMR (200MHz, CDCl3) d 3.72 (m, 2H),
25
½a þ39:1 (c 0.6, MeOH)}, in accord with those re-
D
ported (Scheme 1).
2.89 (dd, J=17.6, 5.9Hz, 1H), 2.52 (br s, OH), 2.48 (dd,
J=17.8, 8.0Hz, 1H), 1.98 (m, 1H), 1.76 (ddq, J=10.0, 7.0,
6.1Hz, 1H), 1.12 (d, J=6.5Hz, 3H), 1.08 (d, J=6.0Hz,
3H), 0.92 (d, J=6.5Hz, 3H); 13C NMR (75MHz, CDCl3):
d 171.33, 86.38, 69.65, 38.96, 38.89, 28.89, 19.94, 14.04,
13.60; MS (EI): m/z 173 (M+H).
In conclusion, we have achieved a short and highly effi-
cient asymmetric synthesis of (+)-prelactone B in 24%
overall yield. Efforts towards the total synthesis of