2614
J. Zhang et al. / Tetrahedron Letters 48 (2007) 2611–2615
Cl
OMe
OMe
Acknowledgments
Cl
Cl
Cl
Cl
Cl
MeO
MeO
MeO
MeO
MeO
O
O
O
O
O
O
We thank Pfizer, Inc for supporting green chemistry
practices. We also acknowledge the assistance of the
High Pressure Lab of Ann Arbor Laboratories, Pfizer,
Inc.
OMe
84%
58%
92%
Br
Br
Cl
Cl
Cl
Cl
MeO
MeO
MeO
MeO
O
O
O
O
O
O
59%
OMe
48%
Cl
OMe
OMe
Supplementary data
71%
Cl
O
Br
Cl
Cl
Br
Supplementary data associated with this article can be
MeO
MeO
MeO
O
O
O
O
O
O
OMe
48%
OMe
85%
82%
Cl
Br
Cl
References and notes
Br
Br
MeO
MeO
MeO
O
O
O
1. (a) Olah, G. A.; Krishnamurit, R.; Prakash, G. K. S.
Friedel–Crafts Alkylation. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
Oxford, 1991; Vol. 3, pp 293–339; (b) Smyth, T. P.; Corby,
B. W. Org. Proc. Res. Dev. 1997, 1, 264–267, and
references cited therein; use in Sertraline (Zoloft) process,
see: (c) Quallich, G. J.; Williams, M. T.; Friedmann, R. C.
J. Org. Chem. 1990, 55, 4971–4973.
O
OMe
38%
OMe
45%
Figure 2. Products from catalytic Friedel–Crafts hydroalkylation of
mucohalic acid by using 10 mol % In(OTf)3 in toluene.19
The above methodologies have several advantages: (1)
both starting materials are inexpensive and commer-
cially available, (2) reactions proceed smoothly, giving
moderate to excellent yields, (3) products are functional-
ized, leading them to further transformations, and (4) a
catalytic amount of Lewis acid or Bro¨nsted acid was
used (1.5 mol % to 10 mol %). This last point opens a
window for using chiral Lewis acids in the asymmetric
Friedel–Crafts hydroxyalkylation reactions to prepare
optically active c-butenolides.
2. Olah, G. A. Friedel–Crafts and Related Reactions, Part 1;
Wiley-Interscience: New York, 1964; p 2.
3. (a) Hachiya, I.; Moriwaki, M.; Kobayashi, S. Tetrahedron
Lett. 1995, 36, 409; (b) Kobayashi, S.; Iwamoto, S.
Tetrahedron Lett. 1998, 39, 4697; (c) Kawada, A.; Mita-
mura, S.; Kobayashi, S. J. Chem. Soc. Commun. 1993,
1157; (d) Barrett, A. G. M.; Bouloc, N.; Braddock, D. C.;
Chadwick, D.; Henderson, D. A. Synlett 2002, 10, 1653.
4. The loading of catalyst (Lewis acid) is usually from 5% to
20%, see: (a) Chapman, C. J.; Frost, C. G.; Hartley, J. P.;
Whittle, A. J. Tetrahedron Lett. 2001, 42, 773; (b) Ali, T.;
Chauhan, K. K.; Forst, C. G. Tetrahedron Lett. 1999, 40,
5621.
5. (a) Clark, J. H.; Tavener, S. J. Org. Process Res. Dev.
2007, 11, 149; (b) Sheldon, R. A. Green Chem. 2005, 7,
267–278.
6. Li, L.; Chen, T. H. Org. Lett. 2001, 3, 739–741; (b) Zaceri,
N. T. Org. Lett. 2001, 3, 843–846.
With these building blocks in hand, we decided to
explore further transformations. The importance of
c-butyrolactones has driven us to access these molecules
from these butenolides. A simple, easily operated, clean,
and catalytic hydrogenation procedure gave c-butyro-
lactones in good to excellent yield (Scheme 2).
7. (a) Morton, L. W.; Caccetta, R. A.; Puddey, I. B.; Croft,
K. D. Clin. Exp. Pharmacol. Psysiol. 2000, 27, 152; (b)
Visioli, F.; Borsani, L.; Galli, C. Cardiovasc. Res. 2000, 47,
409, and Reviews, see: (c) Seeram, N. P. ACS Symp. Ser.
2006, 925, 25–38; (d) Shahidi, F.; Ho, C.-T. ACS Symp.
Ser. 2005, 909, 1–8; (e) Osawa, T. ACS Symp. Ser. 1992,
507, 135–149.
8. Eklund, P. C.; Langvik, O. K.; Waerna, J. P.; Salmi, T. O.;
Willfoer, S. M.; Sjoeholm, R. E. Org. Biomol. Chem. 2005,
3, 3336–3347.
In summary, we have developed a simple, efficient, and
selective method to prepare a variety of highly function-
alized, c-aryl c-butenolides using catalytic indium triflate
or Bro¨nsted acid in the Friedel–Crafts hydroxyalkyl-
ation–lactonization process. Further investigations,
including synthesis of novel butenolide-based antioxi-
dants using these synthons via Suzuki coupling will be
reported in due course.
9. (a) Min, B.-S.; Na, M.-K.; Oh, S.-R.; Ahn, K.-S.; Jeong,
G.-S.; Li, G.; Lee, S.-K.; Joung, H.; Lee, H.-K. J. Nat.
Prod. 2004, 67, 1980–1984; (b) Yoshida, S.; Ogiku, T.;
Ohmizu, H.; Iwasaki, T. Synthesis 1997, 12, 1475–1480.
10. (a) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G.
J. Am. Chem. 2005, 127, 12808–12809; (b) Rainka, M. P.;
Milne, J. E.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005,
44, 6177–6180; (c) Gurjar, M. K.; Karumudi, B.; Ramana,
C. V. J. Org. Chem. 2005, 70, 9658–9661; (d) Coleman, R.
S.; Gurrala, S. R. Org. Lett. 2004, 6, 4025–4028; (e)
Hutchison, J. M.; Hong, S.-P.; McIntosh, M. C. J. Org.
Chem. 2004, 69, 4185–4191; (e) Gurjar, M. K.; Cherian, J.;
Ramana, C. V. Org. Lett. 2004, 6, 317–319; (f) Hong, S.;
McIntosh, M. C. Org. Lett. 2002, 4, 19–21.
Cl
Cl
Cl
Cl
Cl
Cl
MeO
MeO
MeO
O
MeO
MeO
O
O
O
O
O
OMe
OMe
10% Pd/C
Et N, H
THF, 50 psi
1 h
10% Pd/C
Et N, H
10% Pd/C
Et N, H
THF, 50 psi
1 h
87%
90%
95%
THF, 50 psi
1 h
MeO
MeO
MeO
MeO
O
MeO
O
O
O
O
O
OMe
OMe
Scheme 2. Preparation of c-butyrolactones via hydrogenation.