1762
A. Wada et al.
LETTER
M. M.; Starrett, J. E. Jr Bioorg. Med. Chem. Lett. 1996, 6,
2859. (g) Trost, B. M.; Harms, A. E. Tetrahedron Lett. 1996,
37, 3971. (h) Boehm, M. F.; Zhang, L.; Zhi, L.; McClurg, M.
R.; Berger, E.; Wagoner, M.; Mais, D. E.; Suto, C. M.;
Davies, P. J. A.; Heyman, R. A.; Nadzan, A. M. J. Med.
Chem. 1995, 38, 3146. (i) Boehm, M. F.; Zhang, L.; Badea,
B. A.; White, S. K.; Mais, D. E.; Berger, E.; Suto, C. M.;
Goldman, M. E.; Heyman, R. A. J. Med. Chem. 1994, 37,
2930. (j) Vaezi, M. F.; Alam, M.; Sani, B. P.; Rogers, T. S.;
Simpson-Herren, L.; Wille, J. J.; Hill, D. L.; Doran, T. I.;
Brouillette, W. J.; Muccio, D. D. J. Med. Chem. 1994, 37,
4499.
6a: IR (CHCl3)cm–1: 2960, 1702, 1608; 1H NMR (300 MHz,
CDCl3) : 1.29 (3 H, t, J = 7 Hz), 2.37 (3 H, s), 4.18 (2 H, q,
J = 7 Hz), 5.86 (1 H, s), 6.63 (1 H,d, J = 16 Hz), 7.01 (1 H,
dd, J = 3.5, 5 Hz), 7.05 (1 H, d, J = 16 Hz), 7.09 (1 H, d,
J = 3.5 Hz), 7.24 (1 H, d, J = 5 Hz); 13C NMR (75 MHz,
CDCl3) : 13.5, 14.3, 59.7, 119.5, 125.9, 126.9, 127.7, 127.8,
131.4, 141.9, 151.6, 167.0; HRMS (EI) C12H14O2S: requires
220.0715, found 220.0721.
8a: IR (CHCl3) cm–1: 2984, 1697, 1612; 1H NMR (300 MHz,
CDCl3) : 1.31 (3 H, t, J = 7 Hz), 2.08 (3 H, s), 4.19 (2 H, q,
J = 7 Hz), 5.71 (1 H, s), 7.00 (1 H, dd, J = 3.5, 5.5 Hz), 7.03
(1 H, d, J = 15 Hz), 7.13 (1 H, d, J = 3.5 Hz), 7.25 (1 H, d
J = 5.5 Hz), 8.20 (1 H, d J = 15 Hz); 13C NMR (75 MHz,
CDCl3) : 14.3, 20.7, 59.8, 117.6, 125.6, 126.3, 127.7, 127.8,
128.1, 142.5, 150.0, 166.3; HRMS (EI) C12H14O2S: requires
220.0715, found 220.0722.
(4) (a) Wada, A.; Hiraishi, S.; Ito, M. Chem. Pharm. Bull. 1994,
42, 757. (b) Wada, A.; Tanaka, Y.; Fujioka, N.; Ito, M.
Bioorg. Med. Chem. Lett. 1996, 6, 2049. (c) Wada, A.;
Hiraishi, S.; Takamura, N.; Date, T.; Aoe, K.; Ito, M. J. Org.
Chem. 1997, 62, 4343. (d) Wada, A.; Fujioka, N.; Tanaka,
Y.; Ito, M. J. Org. Chem. 2000, 65, 2438.
(14) Griffith, W. P.; Ley, S. V.; Whitecombe, G. P.; White, A. D.
J. Chem. Soc., Chem. Commun. 1987, 1625.
(5) (a) Wada, A.; Nomoto, Y.; Tano, K.; Yamashita, E.; Ito, M.
Chem. Pharm. Bull. 2000, 48, 1391. (b) Wada, A.;
Fukunaga, K.; Ito, M. Synlett 2001, 800.
(6) Several similar cross coupling reactions for the
stereoselective synthesis of retinoids have already been
reported; for all-E-retinoids see: (a) Torrado, A.; Iglesias,
B.; López, S.; de Lera, A. R. Tetrahedron 1995, 51, 2435.
(b) Torrado, A.; López, S.; Alvarez, R.; de Lera, A. R.
Synthesis 1995, 285. (c) Thibonnet, J.; Abarbri, M.;
Duchêne, A.; Parrain, J.-L. Synlett 1999, 141.
(d) Dominguez, B.; Iglesias, B.; de Lera, A. R. J. Org. Chem.
1998, 63, 4135.
(7) (a) For 9Z-retinoic acid see: Pazos, Y.; de Lera, A. R.
Tetrahedron Lett. 1999, 40, 8287. (b) For 11Z-retinal
see:Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Wada, A.;
Ito, M. Angew. Chem. Int. Ed. 1998, 37, 320.
(8) (a) Saulnier, M. G.; Kadow, J. F.; Tun, M. M.; Langley, D.
R.; Vyas, D. M. J. Am. Chem. Soc. 1989, 111, 8320.
(b) Crisp, G. T.; Meyer, A. G. J. Org. Chem. 1992, 57, 6972.
(9) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.
(10) (a) Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem.
1990, 55, 1857. (b) Betzer, J.-F.; Delaloge, F.; Muller, B.;
Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62, 7768.
(11) Stannylcupration of 2 with lithium
(15) Spectral data are as follows; 7a: IR (CHCl3)cm–1: 3012,
1658, 1600; 1H NMR (300 MHz) : 2.34 (3 H, s), 6.05 (1 H,
d, J = 8 Hz), 6.72 (1 H, d, J = 16 Hz), 7.04 (1 H, dd, J = 3.5,
5 Hz), 7.16 (1 H, d J = 3.5 Hz), 7.22 (1 H, d, J = 16 Hz), 7.32
(1 H, d J = 5 Hz), 10.14 (1 H, d, J = 8 Hz); 13C NMR (75
MHz, CDCl3) : 12.9, 126.9, 128.0, 128.5, 128.7, 129.6,
130.6, 141.5, 153.8, 191.0; HRMS (EI) C10H10O2S: requires
178.0452, found 178.0457. 9a: IR (CHCl3) cm–1: 3012,
1658, 1605; 1H NMR (300 MHz) : 2.16 (3 H, s), 5.92 (1 H,
d, J = 8 Hz), 7.05 (1 H, dd, J = 3.5, 5 Hz), 7.12 (1 H, d,
J = 16 Hz), 7.17 (1 H, d J = 3.5 Hz), 7.32 (1 H, d, J = 5 Hz),
7.64 (1 H, d, J = 16 Hz), 10.26 (1 H, d, J = 8 Hz); 13C NMR
(75 MHz, CDCl3) : 21.0, 122.7, 127.0, 128.0, 128.3, 128.9,
129.5, 141.5, 153.6, 189.7; HRMS (EI) C10H10O2S: requires
178.0452, found 178.0450.
(16) (a) Dugger, R. W.; Heathcock, C. H. Synth. Commun. 1980,
10, 509. (b) Robeson, C. D.; Cawley, J. D.; Weisler, L.;
Stern, M. H.; Eddinger, C. C.; Chechak, A. J. J. Am. Chem.
Soc. 1955, 77, 4111.
(17) Bennani, Y. L. J. Org. Chem. 1996, 61, 3542.
(18) Spectral data are as follows; 12a: IR (CHCl3) cm–1: 3300–
2600, 1683, 1590; 1H NMR (300 MHz) : 2.04 (3 H, s), 2.37
(3 H, s), 5.83 (1 H, s), 6.32 (1 H, d, J = 11 Hz), 6.38 (1 H, d,
J = 15 Hz), 6.72 (1 H, d, J = 16 Hz), 6.85 (1 H, d, J = 16
Hz), 6.99 (1 H, dd, J = 3.5, 5 Hz), 7.03 (1 H, d, J = 3.5 Hz),
7.08 (1 H, dd, J = 11, 15 Hz), 7.19 (1 H, d, J = 5 Hz), COOH
signal was not present; 13C NMR (75 MHz, CDCl3) : 12.9,
14.0, 118.0, 122.6, 124.7, 126.3, 127.7, 131.3, 131.5, 132.7,
135.8, 139.2, 143.1, 155.0, CO signal was not present;
HRMS (EI) C15H16O2S: requires 260.0870, found 260.0860.
14a: IR (CHCl3) cm–1: 3300–2600, 1681, 1590; 1H NMR
(500 MHz) : 2.03 (3 H, s), 2.38 (3 H, s), 5.81 (1 H, s), 6.13
(1 H, d, J = 11 Hz), 6.29 (1 H, d, J = 15 Hz), 6.82 (1 H, d,
J = 15 Hz), 6.99 (1 H, dd, J = 3.5, 5 Hz), 7.05 (1 H, d,
J = 3.5 Hz), 7.16 (1 H, d, J = 5 Hz), 7.20 (1 H, d, J = 15 Hz),
7.21 (1 H, dd, J = 11, 15 Hz), COOH signal was not present;
13C NMR (125 MHz, CDCl3) : 14.1, 20.8, 117.3, 122.7,
123.9, 124.6, 125.0, 126.7, 127.8, 129.7, 130.1, 135.1,
142.9, 154.0, CO signal was not present; HRMS (EI)
C15H16O2S: requires 260.0870, found 260.0872.
butyltributylstannylcyanocuprate at –78 °C in THF also
afforded the(arylvinyl)tributyl stannane 3 in good yield. 1H
NMR data of 3a are as follows; (300 MHz, CDCl3) 0.8–1.6
(27 H, m), 6.59 (1 H, d, J = 19 Hz), 6.8–7.0 (2 H, m), 6.95 (1
H, d, J = 19 Hz), 7.13 (1 H, d, J = 5 Hz).
(12) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.
(13) Typical coupling procedure: To a stirred solution
of(arylvinyl)tributyl stannane (3, 1 mmol), vinyl triflate (5 or
5’, 1.5 mmol) and AsPh3 (20 mol%, 60 mg) in DMF (2 mL)
was added Pd2(dba)3-CHCl3 adduct (2.5 mol%, 26 mg) all at
once at r.t. under nitrogen. After stirring for an additional 2
h, the reaction was quenched with saturated aq KF solution
(3 mL) and extracted with Et2O (10 mL 3). The extracts
were washed with aq sat. NaCl solution (10 mL) and then
dried over Na2SO4. The solvent was removed under reduced
pressure and the residue was purified by column
chromatography on silica gel to afford the coupled ester.
(19) It was difficult to obtain the 9Z-aldehyde 9c in pure form due
to its easy isomerization.
(20) Nagarathnam, D. J. Heterocyclic Chem. 1992, 29, 953.
Synlett 2001, No. 11, 1759–1762 ISSN 0936-5214 © Thieme Stuttgart · New York