Asymmetric a-Aminooxylations
3673 3684
4.25 ppm (dd, J=4.0, 2.4 Hz 1H); 13C NMR: d=51.8, 53.0, 126.1, 128.8,
129.1, 138.2 ppm.
c) J. Grˆger, J. Wilken, Angew. Chem. 2001, 113, 515; Angew. Chem.
Int. Ed. 2001, 40, 529; d) E. R. Jarvo, S. J. Miller, Tetrahedron 2002,
58, 2481; e) R. O. Duthaler, Angew. Chem. 2003, 115, 1005; Angew.
Chem. Int. Ed. 2003, 42, 975.
Asymmetric synthesis of (S)-2-amino-1-phenylethanol (10t): The enantio-
merically pure epoxide 9t originating from (R)-proline-catalyzed a-oxi-
dation of aldehyde 1t (1 mmol) was regioselectively ring-opened accord-
ing to reference [32]. The crude azido alcohol product was dissolved in
MeOH (10 mL), and PtO2 (24 mg, 0.10 mmol) was added. The flask was
then flushed with hydrogen at 1 bar, and the reaction mixture was stirred
for 2 h at room temperature. The mixture was filtered through Celite,
and the solvent was removed under reduced pressure. The crude product
was purified by silica gel column chromatography (pentane/EtOAc 1:2)
to afford compound 10t as a white solid (127 mg, 91%). All spectroscop-
ic data were identical to those of the commercially available compound.
1H NMR (CDCl3): d=2.14 (brs, 2H; NH2), 2.82 (dd, J=12.6, 8.0 Hz,
2H; CH2NH2), 3.01 (dd, J=12.8, 4.0 Hz, 1H; CH2NH2), 4.64 (dd, J=5.6,
4.0 Hz, 1H; CHOH), 7.33 ppm (m, 5H; ArH); 13C NMR: d=49.74.5,
126.2, 127.9, 128.7, 139.2 ppm.
[7]a) Z. G. Hajos, D. R. Parrish, Asymmetric Synthesis of Optically
Active Polycyclic Organic Compounds. German Patent.
DE 2102623, July 29, 1971; b) Z. G. Hajos, D. R. Parrish, J. Org.
Chem. 1974, 39, 1615; c) U. Eder, G. Sauer, R. Wiechert, Optically
Active 1,5-Indanone and 1,6-Naphthalenedionene. German Patent
DE 2014757, October 7, 1971; d) U. Eder, G. Sauer, R. Wiechert,
Angew. Chem. 1971, 83, 492; Angew. Chem. Int. Ed. 1971, 10, 496;
e) C. Agami, Bull. Soc. Chim. Fr. 1988, 499.
[8]For example, the total synthesis of taxol: S. J. Danishefsky, J. Am.
Chem. Soc. 1996, 118, 2843.
[9]Aldol reactions, see: a) B. List, R. A. Lerner, C. F. Barbas, III, J.
Am. Chem. Soc. 2000, 122, 2395; b) W. Notz, B. List, J. Am. Chem.
Soc. 2000, 122, 7386; c) K. Saktihvel, W. Notz, T. Bui, C. F. Barbas,
III, J. Am. Chem. Soc. 2001, 123, 5260; d) A. CÛrdova, W. Notz,
C. F. Barbas, III, J. Org. Chem. 2002, 67, 301; e) B. List, P. Pojarliev,
C. Castello, Org. Lett. 2001, 3, 573; f) A. CÛrdova, W. Notz, C. F.
Barbas, III, Chem. Commun. 2002, 3034; g) A. B˘gevig, K. Juhl, N.
Kumaragurubaran, K. A. J˘rgensen, Chem. Commun. 2002, 620;
h) A. B. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002,
124, 6798; i) N. S. Chowdari, D. B. Ramachary, A. CÛrdova, C. F.
Barbas, III, Tetrahedron Lett. 2002, 43, 9591; j) C. Pidathala, L.
Hoang, N. Vignola, B. List Angew. Chem. 2003, 115, 2891; Angew.
Chem. Int. Ed. 2003, 42, 2785; k) Z. Tang, F. Jiang, L.-T. Yu, X. Cui,
L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y. D. Wu, J. Am. Chem. Soc.
2003; 125, 5262.
[10]Mannich reactions see: a) B. List, J. Am. Chem. Soc. 2000, 122,
9336; b) B. List, P. Porjaliev, W. T. Biller, H. J. Martin, J. Am. Chem.
Soc. 2002, 124, 827; c) W. Notz, K. Sakthivel, T. Bui, G. Zhong, C. F.
Barbas, III, Tetrahedron Lett. 2001, 42, 199; d) A. CÛrdova, W.
Notz, G. Zhong, J. M. Betancort, C. F. Barbas, III, J. Am. Chem.
Soc. 2002, 124, 1844; e) A. CÛrdova, Synlett 2003, 1651; f) A. CÛrdo-
va, Chem. Eur. J. 2004, 10, 1957; g) A. CÛrdova, S.-I. Watanabe, F.
Tanaka, W. Notz, C. F. Barbas, III, J. Am. Chem. Soc. 2002, 124,
1866; h) A. CÛrdova, C. F. Barbas, III, Tetrahedron Lett. 2002, 43,
7749; i) A. CÛrdova, C. F. Barbas, III, Tetrahedron Lett. 2003, 44,
1923; j) S.-I. Watanabe, A. CÛrdova, F. Tanaka, C. F. Barbas, III,
Org. Lett. 2002, 4, 4519; k) Y. Hayashi, W. Tsuboi, I. Ashimine, T.
Urushima, M. Shoji, K. Sakai, Angew. Chem. 2003, 115, 3805;
Angew. Chem. Int. Ed. 2003, 42, 3677; l) A. CÛrdova, Acc. Chem.
Res. 2004, 37, 102.
Asymmetric synthesis of (S)-2-(2-propylamino)-1-phenylethanol (11t):
The enantiomerically pure epoxide 9t originating from (R)-proline-cata-
lyzed a-oxidation of aldehyde 1t (1 mmol) was regioselectively ring-
opened according to reference [32]. The crude azido alcohol product was
dissolved in MeOH (10 mL), and PtO2 (12 mg, 0.05 mmol), molecular
sieves (3 ä, 0.45 g), and acetone (110 mL, 1.1 mmol) were added. The
flask was then flushed with hydrogen at 1 bar, and the reaction mixture
was stirred for 5 h at room temperature. The mixture was filtered through
Celite, and the solvent was removed under reduced pressure. The crude
product was purified by silica gel column chromatography (pentane/
EtOAc 1:2) to afford compound 11t as a white solid (237 mg, 92%). All
spectroscopic data were identical to those of the previously described
compound. 1H NMR (CDCl3): d=0.96 (d, J=8.9 Hz, 6H; CH3), 2.49
2.65 (m, 2H), 3.40 3.53 (m, 1H), 4.58 4.65 (m, 1H; CHOH), 7.33 ppm
(m, 5H; ArH).[36]
Computational details: All geometries and energies presented in this
study were computed by use of the B3LYP[37] density functional theory
method as implemented in the Gaussian 98 program package.[38] Geome-
try optimizations were performed with the double zeta plus polarization
basis set 6 31G(d,p). From these geometries, single-point calculations
with the larger 6 311+G(2d,2p) basis set were performed in order to
obtain more accurate energies. Hessians for evaluation of zero-point vi-
brational effects were calculated at the B3LYP/6 31G(d,p) level of
theory.
[11] a-Aminations see: a) A. B˘gevig, K. Juhl, N. Kumaragurubaran, W.
Zhuang, K. A. J˘rgensen, Angew. Chem. 2002, 114, 1868; Angew.
Chem. Int. Ed. 2002, 41, 1790; b) B. List, J. Am. Chem. Soc. 2002,
124, 5656; c) N. Kumaragurubaran, K. Juhl, W. Zhuang, A. B˘gevig,
K. A. J˘rgensen, J. Am. Chem. Soc. 2002, 124, 6254.
Acknowledgment
Support by Prof. J.-E. B‰ckvall and Stockholm University is gratefully ac-
knowledged. We thank Prof. H. Adolfsson for valuable discussions and
the Swedish National Research council, the Lars Hierta Foundation, and
the Wenner Gren Foundation for financial support.
[12]Michael reactions see: a) B. List, P. Pojarliev, H. B. Martin, Org.
Lett. 2001, 3, 2423; b) M. Yamaguchi, T. Shiraishi, M. Hirama, J.
Org. Chem. 1996, 61, 3520; c) M. Yamaguchi, Y. Igarashi, R. S.
Reddy, T. Shiraishi, M. Hirama, Tetrahedron 1997, 53, 11223; c) M.
Yamaguchi, Y. Igarashi, T. Shiraishi, M. Hirama, Tetrahedron Lett.
1994, 35, 8233; d) S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975;
e) J. M. Betancort, K. Sakthivel, R. Thayumanavan, C. F. Barbas,
III, Tetrahedron Lett. 2001, 42, 4441; f) J. M. Betancort, C. F.
Barbas, III, C. F . Org. Lett. 2001, 3, 3737; g) D. J. Hortsmann, D. J.
Guerin, S. J. Miller, Angew. Chem. 2000, 112, 3781; Angew. Chem.
Int. Ed. 2000, 39, 3635; h) A. Alexakis, O. Andrey, Org. Lett. 2002,
4, 3611; i) D. J. Guerin, S. J. Miller, J. Am. Chem. Soc. 2002, 124,
2134; j) N. Halland, P. S. Aburel, K. A. J˘rgensen, Angew. Chem.
2003, 115, 685; Angew. Chem. Int. Ed. 2003, 42, 661; k) N. Halland,
R. G. Hazell, K. A. J˘rgensen, J. Org. Chem. 2002, 67, 8331; l) O.
Andrey, A. Alexakis, G. Bernardinelli, Org. Lett. 2003, 5, 2559;
m) D. Enders, A. Seki, Synlett 2002, 26.
[1]a) Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen, A.
Pfaltz, H. Yamamoto), Springer, Heidelberg, 1999; b) R. Noyori,
Asymmetric Catalysis in Asymmetric in Organic Synthesis, Wiley,
New York, 1994; c) Catalytic Asymmetric Synthesis (Ed.: I. Ojima),
2nd ed, Wiley-VCH, New York, 2000.
[2]a) F. A. Davis, B. C. Chen, Methods of Organic Chemistry (Houben
Weyl) Vol. E21 (Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E.
Schaumann), Thieme, Stuttgart, 1995, p. 4497; b) D. Enders, U.
Reinhold, Liebigs Ann. 1996, 11; c) D. Enders, U. Reinhold, Synlett
1994, 792.
[3]a) F. A. Davis, B. C. Chen, Chem. Rev. 1992, 92, 919. and references
therein; b) B. B. Lohray, D. Enders, Helv. Chim. Acta 1989, 72, 980.
[4]a) L. Colombo, M. D. Giacomo, Tetrahedron Lett. 1999, 40, 1977;
b) E. L. Eliel, Asymmetric Synth. 1983, 2A, 125, and references
therein.
[5]N. Momiyama, H. Yamamoto, J. Am. Chem. Soc. 2003, 125, 6038.
[6]a) P. I. Dalko, L. Moisan Angew. Chem. 2001, 113, 3840; Angew.
Chem. Int. Ed. 2001, 40, 3726; b) B. List, Tetrahedron 2002, 58, 5573;
[13]Diels Alder reactions see: a) A. B. Northrup, D. W. C. MacMillan, J.
Am. Chem. Soc. 2002, 124, 2458; b) K. A. Ahrendt, C. J. Borths,
D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243. Hetero-
Diels Alder reactions see: c) K. Juhl, K. A. J˘rgensen, Angew.
Chem. 2003, 115, 1536; Angew. Chem. Int. Ed. 2003, 42, 1498; d) Y.
Huang, K. Unni, A. N. Thadani, V. Rawal, Nature 2003, 424, 146.
Chem. Eur. J. 2004, 10, 3673 3684
¹ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3683