462
M. Hennebo¨hle et al. · Isoxazolinium Salts in Asymmetric Synthesis. 1. Reduction
yellowish oil (286 mg, d. r. 72:28). The mixture was filtered then reduced according to General Procedure B. Isoxazo-
through silica (column 2 cm ×8 cm, petrol ether/EtOAc 8:2) line 13 (1.46 g, 6.91 mmol), Me3OBF4 (1.12 g, 7.57 mmol),
and the resulting colorless oil (172 mg) was separated by CH2Cl2 (30 ml, abs.); then reduction with NaBH4 (523 mg,
MPLC (column type C, petrol ether/EtOAc 1:1). After sol- 13.8 mmol) in EtOH (60 ml, abs.); yellow oil of 32/33
vent removal (10−3 Torr) colorless, analytically pure com- (1.46 g, d. r. 81:19). Purification: The crude product was fil-
pounds 30 (erythro, oil, 122 mg, 44%) and 31 (threo, oil, tered through silica (column 2 cm × 17 cm, solvent petrol
45 mg, 16%) were obtained.
ether/EtOAc 1:1), affording 1.45 g of a slightly yellow oil af-
ter solvent removal. MPLC separation (column type C, elu-
ent petrol ether/EtOAc 1:1) gave the erythro isoxazolidine 32
(1.07 g, 68%) and the threo isomer 33 (256 mg, 16%), both
as colorless, analytically pure oils.
Erythro isomer 30: [α]2D0 = 42.6 (c = 0.55, CH2Cl2). –
IR (film): ν = 2954, 2868, 1454, 1097, 1062, 1028,
737 cm−1. – 1H NMR (500.1 MHz, CDCl3): δ = 2.25
(“dddd”, J3,4A = 4.7, 2J4A,4B = 12.4, J4A,5A = 8.5, J4A,5B
=
Erythro isomer 32: [α]2D0 = −31.9 (c = 0.73, CH2Cl2). –
IR (Film): ν = 2936, 2861, 1163, 1101, 1038, 927 cm−1. –
1H NMR (500.1 MHz, CDCl3): δ = 1.35 − 1.65 (m,
10 H, C(CH2)5), 2.30 (“dddd”, J3,4A = 3.6, 2J4A,4B = 12.6,
J4A,5A = 8.7, J4A,5B = 6.2 Hz, 1 H, 4-HA), 2.44 (dddd,
6.3 Hz, 1 H, 4-HA), 2.33 (ddt, J3,4B = J4B,5B = 8.5,
2J4A,4B = 12.4, J4B,5A = 6.0 Hz, 1 H, 4-HB), 2.60 (s,
ꢀ
3 H, NCH3), 3.09 (ddd, J3,4A = 4.7, J3,4B = 8.3, J3,1
=
ꢀ
ꢀ
ꢀ
6.8 Hz, 1 H, 3-H), 3.48 (ddd, J3,1 = 6.8, J1 ,2 A = 4.9,
ꢀ
ꢀ
ꢀ
ꢀ
J1 ,2 B = 3.4 Hz, 1 H, 1’-H), 3.66 (dd, J1 ,2 A = 4.9,
2
2
ꢀ
ꢀ
ꢀ
ꢀ
J2 A,2 B = 10.4 Hz, 1 H, 2’-HA); 3.73 (dd, J1 ,2 B = 3.4,
J3,4B = 8.1, J4A,4B = 12.6, J4B,5A = 6.0, J4B,5B = 8.9 Hz,
1 H, 4-HB), 2.63 (s, 3 H, NCH3), 2.94 (dt, J3,4A = 3.6,
J2 A,2 B = 10.4 Hz, 2’-HB), 3.76 (dt, J4A,5A =2 J5A,5B = 8.3,
2
ꢀ
ꢀ
J4B,5A = 6.1 Hz, 5-HA) – sum 2 H; 3.96 (dt, J4A,5B = 6.2,
ꢀ
ꢀ
ꢀ
J3,4B = J3,1 = 8.2 Hz, 1 H, 3-H), 3.83 (dd, J1 ,2 A = 5.3,
J4B,5B =2J5A,5B = 8.3 Hz, 1 H, 5-HB), 4.53, 4.56 (A, B of
2
ꢀ
ꢀ
J2 A,2 B = 8.4 Hz, 1 H, 2’-HA); 3.90 (“ddd”, J4A,5A = 8.7,
2
J4B,5A = 6.0, 2J5A,5B = 8.0 Hz, 5-HA), 3.94 (ddd, J3,1 = 8.2,
AB, JAB = 12.1 Hz, 2 H, CH2C6H5), 4.59, 4.73 (A, B of
ꢀ
AB, 2JAB = 11.7 Hz, 2 H, CH2C6H5), 7.22 – 7.37 (m, 10 H,
2 C6H5). – 13C NMR (125.8 MHz, CDCl3): δ = 30.6 (t, C-
4), 44.8 (q, NCH3), 65.0 (t, C-5), 67.7 (d, C-3), 70.1 (t, C-2’),
72.5, 73.3 (2 t, 2 CH2C6H5), 78.8 (d, C-1’), 127.5, 127.6,
127.9, 128.1, 128.28, 128.32 (6 d, o-, m-, p-C of 2 C6H5),
138.3, 138.5 (2 s, i-C of 2 C6H5).
ꢀ
ꢀ
ꢀ
ꢀ
J1 ,2 A = 5.3, J1 ,2 B = 6.1 Hz, 1’-H) – sum 2 H; 4.04 (ddd,
2
J4A,5B = 6.2, J4B,5B = 9.0, J5A,5B = 8.0 Hz, 1 H, 5-HB),
2
ꢀ
ꢀ
ꢀ
ꢀ
4.10 (dd, J1 ,2 B = 6.1, J2 A,2 B = 8.4 Hz, 1 H, 2’-HB). –
13C NMR (125.8 MHz, CDCl3): δ = 23.8, 24.0, 25.2, 34.8,
36.7 (5 t, C(CH2)5), 30.7 (t, C-4), 44.8 (q, NCH3), 64.9 (t,
C-5), 67.7 (t, C-2’), 69.5 (d, C-3), 76.4 (d, C-1’), 109.8 (s,
C(CH2)5).
Threo isomer 31: [α]2D0 = −29.4 (c = 0.38, CH2Cl2). –
IR (film): ν = 2956, 2866, 1454, 1097, 1058, 1028,
737 cm−1. – 1H NMR (500.1 MHz, CDCl3): δ = 2.00
(ddt, J3,4A = J4A,5B = 6.7, 2J4A,4B = 12.2, J4A,5A = 8.3 Hz,
1 H, 4-HA), 2.30 (ddt, J3,4B = J4B,5B = 8.2, 2J4A,4B = 12.2,
Threo isomer 33: [α]2D0 = 82.2 (c = 0.81, CH2Cl2). –
IR (Film): ν = 2935, 2861, 1163, 1105, 1041, 928 cm−1. –
1H NMR (500.1 MHz, CDCl3): δ = 1.39 − 1.66 (m,
10 H, C(CH2)5), 1.89 (“dddd”, J3,4A = 6.5, 2J4A,4B = 12.3,
J4B,5A = 5.5 Hz, 1 H, 4-HB), 2.74 (s, 3 H, NCH3), 2.98 – 3.03
J4A,5A = 8.7, J4A,5B = 5.8 Hz, 1 H, 4-HA), 2.33 (ddt, J3,4B
8.6, J4A,4B = 12.3, J4B,5A = 6.0, J4B,5B = 8.6 Hz, 1 H, 4-
=
2
2
ꢀ
ꢀ
ꢀ
ꢀ
(m, 1 H, 3-H), 3.56 (dd, J1 ,2 A = 5.0, J2 A,2 B = 10.1 Hz,
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
1 H, 2’-HA), 3.60 (ddd, J3,1 = 7.3, J1 ,2 A = 5.0, J1 ,2 B
=
=
HB), 2.78 (s, 3 H, NCH3), 2.80 – 2.85 (m, 1 H, 3-H), 3.66 (dd,
2
J1 ,2 A = 6.8, 2J2 A,2 B = 8.3 Hz, 1 H, 2’-HA), 3.83 (“dddd”,
ꢀ
ꢀ
ꢀ
ꢀ
3.3 Hz, 1 H, 1’-H), 3.68 (dd, J1 ,2 B = 3.3, J2 A,2 B
10.1 Hz, 1 H, 2’-HB), 3.82 (dt, J4A,5A
ꢀ
ꢀ
ꢀ
ꢀ
2
4J3,5A = 0.5, J4A,5A = 8.7, J4B,5A = 6.0, J5A,5B = 8.2 Hz,
2
= J5A,5B = 8.2,
1 H, 5-HA), 3.96 (ddd, J4A,5B = 5.8, J4B,5B = 8.6, 2J5A,5B
=
J4B,5A = 5.4 Hz, 1 H, 5-HA), 3.94 (dt, J4A,5B = 6.6, J4B,5B
=
2J5A,5B = 8.0 Hz, 1 H, 5-HB), 4.51, 4.57 (A, B of AB,
2JAB = 12.1 Hz, 2 H, CH2C6H5), 4.67, 4.74 (A, B of AB,
2JAB = 11.6 Hz, 2 H, CH2C6H5), 7.25 – 7.37 (m, 10 H,
2 C6H5). – 13C NMR (125.8 MHz, CDCl3): δ = 32.4 (t, C-
4), 46.1 (q, NCH3), 64.9 (t, C-5), 68.5 (d, C-3), 70.6 (t, C-2’),
72.9, 73.5 (2 t, 2 CH2C6H5), 80.7 (d, C-1’), 127.5, 127.7,
127.9, 128.3, 128.4 (5 d, o-, m-, p-C of 2 C6H5) 138.1, 138.6
(2 s, i-C of 2 C6H5). – C20H25NO3 (327.4): calcd. C 73.37,
H 7.70, N 4.28; found for 30: C 73.17, H 7.75, N 4.24; found
for 31: C 73.25, H 7.78, N 4.29.
8.2 Hz, 1 H, 5-HB), 4.04 (dd, J1 ,2 B = 6.4, 2J2 A,2 B = 8.3 Hz,
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
1 H, 2’-HB), 4.13 (ddd, J3,1 = 7.7, J1 ,2 A = 6.8, J1 ,2 B
=
6.4 Hz, 1 H, 1’-H). – 13C NMR (125.8 MHz, CDCl3):
δ = 23.8, 24.0, 25.1, 34.8, 36.4 (5 t, C(CH2)5), 31.6 (t, C-
4), 45.1 (q, NCH3), 64.9 (t, C-5), 66.5 (t, C-2’), 69.7 (d, C-
3), 76.8 (d, C-1’), 110.3 (s, C(CH2)5). – C12H21NO3 (227.3):
calcd. C 63.41, H 9.31, N 6.16; found for 32: C 63.51, H 9.38,
N 6.14; found for 33 C 63.49, H 9.33, N 6.08.
Isoxazolidines 32 (erythro) and 33 (threo) from 17 by sodium
triacetoxyborohydride reduction
(3S,1’S)- and (3R,1’S)-3-(1’,2’-Cyclohexylidenedioxyethyl)-
2-methyltetrahydro-1,2-oxazole (32, erythro and 33, threo)
A solution of the isoxazolinium salt 17 (295 mg,
◦
Starting with the isoxazoline 13, the isoxazolinium salt 0.94 mmol) in THF (5 ml, abs.) was added at −78 C to a
17 was prepared according to General Procedure A and suspension of NaBH(OAc)3 (420 mg, ca. 1.88 mmol) in THF
Brought to you by | University of California
Authenticated
Download Date | 11/30/15 10:06 AM