Page 21 of 22
Organic & Biomolecular Chemistry
DOI: 10.1039/C4OB02633K
1 W. K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369.
2 K. Müller, C. Faeh and F. Diederich, Science 2007, 317, 1881–1886.
3 P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, WileyꢀVCH, Weinheim,
2006.
4 J. Scheirs, Ed. Modern Fluoropolymers: High Performance Polymers for diverse Applications John Wiley &
Sons, Chichester, 2000.
5 W. Grot, Fluorinated Ionomers, Elsevier, Oxford, 2011.
6 J. A. Gladysz, D. P. Curran and I. T. Horváth, Handbook of Fluorous Chemistry, WileyꢀVCH, Weinheim,
2004.
7 A. M. Thayer, Chem. Eng. News, 2006, 84, 15–25.
8 K. L. Kirk, J. Fluorine Chem. 2006, 127, 1013–1029.
9 D. O’Hagan, J. Fluorine Chem. 2010, 131, 1071–1081.
10 J.ꢀP. Bégué and D. BonnetꢀDelpon, J. Fluorine Chem. 2006, 127, 992–1012
11 S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330.
12 (a) Z. Jin, G. B. Hammond and B. Xu, Aldrichimica Acta 2012, 45, 67–83; (b) H. Egami and M. Sodeoka,
Angew. Chem. Int. Ed. 2014, 53, 8294–8308.
13 J.ꢀA. Ma and D. Cahard, Chem. Rev. 2008, 108, PR1–PR43.
14 N. Shibata, A. Matsnev and D. Cahard, Beilstein J. Org. Chem. 2010, 6, 65.
15 O. A. Tomashenko and V. V. Grushin, V. V. Chem. Rev. 2011, 111, 4475–4521.
16 A. Studer, Angew. Chem. Int. Ed. 2012, 51, 8950–8958.
17 (a) P. Chen and G. Liu, Synthesis 2013, 45, 2919–2939; (b) G. Landelle, A. Panossian, S. Pazenok, J.ꢀP. Vors
and F. R. Leroux, Beilstein J. Org. Chem. 2013, 9, 2476–2536.
18 X.ꢀF.; H. Neumann and M. Beller, Chem. Asian J. 2012, 7, 1744–1754.
19 L. Chu and F.ꢀL. Qing, Acc. Chem. Res. 2014, 47, 1513–1522.
20 G. Landelle, A. Panossian and F. R. Leroux, Curr. Top. Med. Chem. 2014, 14, 941–951.
21 K. Fauster, C. Kreutz and R. Micura, Angew. Chem. Int. Ed. 2012, 51, 13080–13084.
22 (a) F. Toulgoat, S. Alazet and T. Billard, Eur. J. Org. Chem. 2014, 2415–2428; (b) A. Tlili and T. Billard
Angew. Chem. Int. Ed. 2013, 52, 6818–6819.
23 S. Munavalli, D. K. Rohrbaugh, D. I. Rossman and H. D. Durst, J. Fluorine Chem. 1999, 98, 3–9.
24 L. Dieu, I. Popov and O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18237–18240.
25 V. N. Boiko, Beilstein J. Org. Chem. 2010, 6, 880–921.
26 (a) D. J. Adams, A. Goddard, J. H. Clark and D. J. Macquarrie, Chem. Commun. 2000, 987–988; (b) M. Hu,
J. Rong, W. Miao, C. Ni, Y. Han and J. Hu, Org. Lett. 2014, 16, 2030–2033; (c) M. Rueping, N. Tolstoluzhsky
and P. Nikolaienko, Chem. Eur. J. 2013, 19, 14043–14046; (d) G. Danoun, B. Bayarmagnai, M. F. Gruenberg
and L. J. Goossen, Chem. Sci. 2014, 5, 1312–1316; (e) Q. Lefebvre, E. Fava, P. Nikolaienko and M. Rueping,
Chem. Commun. 2014, 50, 6617–6619; (f) D. Kong, Z. Jiang, S. Xin, Z. Bai, Y. Yuan and Z. Weng, Tetrahedron
2013, 69, 6046–6050; (g) P. Zhu, X. He, X. Chen, Y. You, Y. Yuan and Z. Weng, Tetrahedron 2014, 70, 672–
677; (h) Z. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. Lai, D. Kong, Y. Yuan and K.ꢀW. Huang, Angew. Chem.
Int. Ed. 2013, 52, 1548–1552; (i) Z. Wang, Q. Tu and Z. Weng, J. Organomet. Chem. 2014, 751, 830–834; (j) B.
Bayarmagnai, C. Matheis, E. Risto and L. J. Goossen, Adv. Synth. Catal. 2014, 356, 2343–2348.
27 (a) Q. Xiao, J. Sheng, Q. Ding and J. Wu, Eur. J. Org. Chem. 2014, 217–221; (b) F. Yin and X.ꢀS. Wang,
Org. Lett. 2014, 16, 1128–1131; (c) X. Wang, Y. Zhou, G. Ji, G. Wu, M. Li, Y. Zhang and J. Wang, Eur. J. Org.
Chem. 2014, 3093–3096; (d) G. Teverovskiy, D. S. Surry and S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50,
7312–7314; (e) D. J. Adams and J. H. Clark, J. Org. Chem. 2000, 65, 1456–1460; (f) C. Chen, X.ꢀH. Xu, B.
Yang and F.ꢀL. Qing, Org. Lett. 2014, 16, 3372–3375.
28 (a) C.ꢀP, Zhang and D. A. Vicic, J. Am. Chem. Soc. 2012, 134, 183–185; (b) C.ꢀP. Zhang and D. A. Vicic,
Chem. Asian J. 2012, 7, 1756–1758.
29 See, for example: (a) C. Pooput, M. Medebielle and W. R. Dolbier, Jr., Org. Lett. 2004, 6, 301–303; (b) I.
Kieltsch, P. Eisenberger and A. Togni, Angew. Chem. Int. Ed. 2007, 46, 754–757; (c) N. Santschi and A. Togni,
J. Org. Chem. 2011, 76, 4189–4193; (d) S. Capone, I. Kieltsch, O. Flögel, G. Lelais, A. Togni and D. Seebach,
Helv. Chim. Acta 2008, 91, 2035–2056; (e) C. Chen, Y. Xie, L. Chu, R.ꢀW. Wang, X. Zhang and F.ꢀL. Qing,
Angew. Chem. Int. Ed. 2012, 51, 2492–2495; (f) C. Chen, L. Chu and F.ꢀL. Qing, J. Am. Chem. Soc. 2012, 134,
12454–12457; (g) L. Zhai, Y. Li, J. Yin, K. Jin, R. Zhang, X. Fu and C. Duan, Tetrahedron 2013, 69, 10262–
10266; (h) V. N. Movchun, A. A. Kolomeitsev and Y. L. Yagupolskii, J. Fluorine Chem. 1995, 70, 255–257; (i)
T. Billard, S. Large and B. R. Langlois, Tetrahedron Lett. 1997, 38, 65–68; (j) Y. Huang, X. He, X. Lin, M.
Rong and Z. Weng, Org. Lett. 2014, 16, 3284–3287.
30 A. Ferry, T. Billard, B. R. Langlois and E. Bacqué, J. Org. Chem. 2008, 73, 9362–9365.
31 A. Ferry, T. Billard, B. R. Langlois and E. Bacqué, Angew. Chem. Int. Ed. 2009, 48, 8551–8555.
32 A. Ferry, T. Billard, E. Bacqué and B. R. Langlois, J. Fluorine Chem. 2012, 134, 160–163.
21