Published on Web 09/11/2004
Substituent-Dependent Photoinduced Intramolecular Charge
Transfer in N-Aryl-Substituted trans-4-Aminostilbenes
Jye-Shane Yang,* Kang-Ling Liau, Chin-Min Wang, and Chung-Yu Hwang
Contribution from the Department of Chemistry and Center for Nano Science and Technology,
National Central UniVersity/UST, Chung-Li, Taiwan 32054
Received April 26, 2004; E-mail: jsyang@cc.ncu.edu.tw
Abstract: The photochemical behavior of trans-4-(N-arylamino)stilbene (1, aryl ) 4-substituted phenyl) in
solvents more polar than THF is strongly dependent on the substituent in the N-aryl group. This is attributed
to the formation of a twisted intramolecular charge transfer (TICT) state for those with a methoxy (1OM),
methoxycarbonyl (1CO), or cyano (1CN) substituent but not for those with a methyl (1Me), hydrogen (1H),
chloro (1Cl), or trifluoromethyl (1CF) substituent. On the basis of the ring-bridged model compounds 3-6,
the TICT states for 1CN and 1CO result from the twisting of the anilino-benzonitrilo C-N bond, but for
1OM it is from the twisting of the stilbenyl-anilino C-N bond, both of which are distinct from the TICT
states previously proposed for N,N-dimethylaminostilbenes.
Introduction
of the dimethylamino (donor, D)-benzonitrilo (acceptor, A)
single bond that results in a nearly perpendicular D-A geometry
The electronic excited states of arylamines possess more or
less the character of intramolecular charge transfer (ICT) from
the amino nitrogen to the arene, and those having the ICT
configuration as the main component are often referred to as
ICT states. While many ICT-based arylamines have been
investigated as nonlinear optical materials,1 two-photon-absorb-
ing chromophores,2 electrooptical switches,3 chemical sensors,4
and fluorescence probes,5 characterization of their ICT states
(e.g., electronic nature and molecular geometry) is far from
straightforward, even for a simple molecule such as 4-(N,N-
dimethylamino)benzonitrile (DMABN). Since the first observa-
tion by Lippert et al.,6 the phenomenon of dual fluorescence
for DMABN has led to numerous theoretical and experimental
studies to account for the origin of the ICT fluorescence.6-13
Several distinct models have been proposed, including a twisting
(twisted intramolecular charge transfer, TICT),7-10 an in-plane
bending of the cyano group (rehybridization by intramolecular
charge transfer, RICT),11 and a pyramidalization (wagged
(7) (a) Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R. Chem. Phys. Lett.
1973, 19, 315-318. (b) Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk,
A.; Cowley, D. J. Baumann, W. NouV. J. Chim. 1979, 3, 443-454. (c)
Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971-988. (d) Rettig,
W.; Maus, M. In Conformational Analysis of Molecules in Excited States;
Waluk, J., Ed.; Wiley-VCH: New York, 2000; Chapter 1, pp 1-55. (e)
Grabowski, Z. R.; Rotkiewicz, K. Chem. ReV. 2003, 103, 3899-4031.
(8) (a) Rettig, W.; Bliss, B.; Dirnberger, K. Chem. Phys. Lett. 1999, 305, 8-14.
(b) Rettig, W.; Zietz, B. Chem. Phys. Lett. 2000, 317, 187-196. (c) Rettig,
W.; Lutze, S. Chem. Phys. Lett. 2001, 341, 263-271. (d) Dobkowski, J.;
Wo´jcik, J.; Kozminski, W.; Kolos, R.; Waluk, J.; Michl, J. J. Am. Chem.
Soc. 2002, 124, 2406-2407. (e) Rotkiewicz, K.; Rettig, W.; Detzer, N.;
Rothe, A. Phys. Chem. Chem. Phys. 2003, 5, 998-1002. (f) Dobkowski,
J.; Michl, J.; Waluk, J. Phys. Chem. Chem. Phys. 2003, 5, 1027-1031. (g)
Kwok, W. M.; Ma, C.; George, M. W.; Grills, D. C.; Matousek, P.; Parker,
A. W.; Phillips, D.; Toner, W. T.; Towrie, M. Phys. Chem. Chem. Phys.
2003, 5, 1043-1050. (h) Saigusa, H.; Iwase, E.; Nishimura, M. J. Phys.
Chem. A 2003, 107, 3759-3763.
(1) (a) Marder, S. R.; Perry, J. W. Science 1994, 263, 1706-1707. (b) Verbiest,
T.; Burland, D. M.; Jurich, M. C.; Lee, V. Y.; Miller, R. D.; Volksen, W.
Science 1995, 268, 1604-1606. (c) Whitaker, C. M.; Patterson, E. V.; Kott,
K. L.; McMahon, R. J. J. Am. Chem. Soc. 1996, 118, 9966-9973. (d) Nandi,
P. K.; Mandal, K.; Kar, T. Chem. Phys. Lett. 2003, 381, 230-238.
(2) (a) Albota, M.; Beljonne, D.; Bre´das, J. L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal,
A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-
Maughon, D.; Perry, J. W.; Ro¨ckel, H.; Rumi, M.; Subramaniam, G.; Webb,
W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653-1656. (b) Kogej, T.;
Beljonne, D.; Meyers, F.; Perry, J. W.; Marder, S. R.; Bre´das, J. L. Chem.
Phys. Lett. 1998, 298, 1-6. (c) Reinhardt, B. A.; Brott, L. L.; Clarson, S.
J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P.
N. Chem. Mater. 1998, 10, 1863-1874. (d) Lee, W.-H.; Lee, H.; Kim,
J.-A.; Choi, J.-H.; Cho, M.; Jeon, S.-J.; Cho, B. R. J. Am. Chem. Soc. 2001,
123, 10658-10667. (e) Wang, X.; Zhou, Y.; Zhou, G.; Jiang, W.; Jiang,
M. Bull. Chem. Soc. Jpn. 2002, 75, 1847-1854.
(9) (a) Mennucci, B.; Toniolo A.; Tomasi, J. J. Am. Chem. Soc. 2000, 122,
10621-10630. (b) Parusel, A. B. J.; Rettig, W.; Sudholt, W. J. Phys. Chem.
A 2002, 106, 804-815. (c) Jo¨dicke, C. J.; Lu¨thi, H. P. J. Am. Chem. Soc.
2003, 125, 252-264. (d) Jo¨dicke, C. J.; Lu¨thi, H. P. J. Chem. Phys. 2003,
119, 12852-12865. (e) Rappoport, D.; Furche, F. J. Am. Chem. Soc. 2004,
126, 1277-1284.
(10) (a) Serrano-Andre´s, L.; Mercha´n, M.; Roos, B. O.; Lindh, R. J. Am. Chem.
Soc. 1995, 117, 3189-3204. (b) Jo¨dicke, C. J.; Lu¨thi, H. P. J. Chem. Phys.
2002, 117, 4146-4156. (c) Jo¨dicke, C. J.; Lu¨thi, H. P. J. Chem. Phys.
2002, 117, 4157-4167.
(11) (a) Sobolewski, A. L.; Domcke, W. Chem. Phys. Lett. 1996, 250, 428-
436. (b) Sobolewski, A. L.; Domcke, W. Chem. Phys. Lett. 1996, 259,
119-127.
(12) Schuddeboom, W.; Jonker, S. A.; Warman, J. M.; Leinhos, U.; Ku¨hnle,
W.; Zachariasse, K. A. J. Phys. Chem. 1992, 96, 10809-10819.
(13) (a) von der Haar, T.; Hebecker A.; Il’ichev, Y.; Jiang, Y.-B.; Ku¨hnle, W.;
Zachariasse, K. A. Recl. TraV. Chim. Pays-Bas 1995, 114, 430-442. (b)
Zachariasse, K. A.; Grobys, M.; von der Haar, T.; Hebecker A.; Il’ichev,
Y. V.; Jiang, Y.-B.; Morawski, O.; Ku¨hnle, W. J. Photochem. Photobiol.
A: Chem. 1996, 102, 59-70. (c) Zachariasse, K. A.; Grobys, M.; von der
Haar, T.; Hebecker A.; Il’ichev, Y. V.; Morawski, O.; Ru¨ckert, I.; Ku¨hnle,
W. J. Photochem. Photobiol. A: Chem. 1997, 105, 373-383. (d) Il’ichev,
Y. V.; Ku¨hnle, W.; Zachariasse, K. A. J. Phys. Chem. A 1998, 102, 5670-
5680. (e) Zachariasse, K. A. Chem. Phys. Lett. 2000, 320, 8-13. (f)
Demeter, A.; Zachariasse, K. A. Chem. Phys. Lett. 2003, 380, 699-703.
(g) Zachariasse, K. A.; Druzhinin, S. I.; Bosch, W.; Machinek, R. J. Am.
Chem. Soc. 2004, 126, 1705-1715.
(3) La Clair, J. J. Angew. Chem., Int. Ed. 1999, 38, 3045-3047.
(4) (a) Morozumi, T.; Anada, T.; Nakamura, H. J. Phys. Chem. B 2001, 105,
2923-2931. (b) Xiao, Y.; Qian, X. Tetrahedron Lett. 2003, 44, 2087-
2091. (c) Yang, J.-S.; Hwang, C.-Y.; Hsieh, C.-C.; Chiou, S.-Y. J. Org.
Chem. 2004, 69, 719-726. (d) Yang, J.-S.; Lin, Y.-D.; Lin, Y.-H.; Liao,
F.-L. J. Org. Chem. 2004, 69, 3517-3525.
(5) La Clair, J. J. Angew. Chem., Int. Ed. 1998, 37, 325-329.
(6) (a) Lippert, E.; Lu¨der, W.; Moll, F.; Na¨gele, W.; Boos, H.; Prigge, H.;
Seibold-Blankenstein, I. Angew. Chem. 1961, 73, 695-706. (b) Lippert,
E.; Lu¨der, W.; Boos, H. In AdVances in Molecular Spectroscopy; Mangini,
A., Ed.; Pergamon Press: Oxford, 1962; pp 443-457.
9
10.1021/ja047604d CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 12325-12335
12325