210 J . Org. Chem., Vol. 62, No. 1, 1997
Notes
J ) 7.2 Hz, 3 H), 1.15 (t, J ) 7.2 Hz, 3 H), 1.2-1.5 (m, 3 H),
1.73 (m, 2 H), 2.42 (q, J ) 7.2 Hz, 2 H), 2.52 (m, 1 H), 3.67 (t, J
) 6.5 Hz, 1 H), 4.99 (d, J ) 13.6 Hz, 1 H), 5.18 (d, J ) 13.6 Hz,
1 H), 6.76 (d, J ) 7.0 Hz, 1 H), 7.45 (m, 3 H), 7.53 (m, 2 H), 8.68
(s, 1 H); 13C NMR (CD3OD) δ 10.1, 12.9, 13.8, 19.7, 25.8, 25.9,
32.1, 39.6, 60.2, 63.8, 129.9, 130.2, 130.6, 131.1, 131.2, 132.2,
Sch em e 3
134.0, 146.4, 166.5; MS m/e 270 (M+); HRMS calcd for C19H28
N
270.2222, found 270.2217.
3,5-Diisop r op yl-2-(2′-m et h ylp r op yl)-N-b en zyl-2,3-d ih y-
d r op yr id in iu m (3a ) a n d 3,5-Diisop r op yl-2-(2′-m eth ylp r o-
p yl)-N-ben zylp yr id in iu m (3b). Prepared from isovaleralde-
hyde and benzylamine hydrochloride. 3a : mp 88-89 °C; UV
λmax 295 nm (ꢀ 4820); IR λ-1
(cm-1) 1602, 1480, 1458, 1352;
max
1H NMR (CD3OD) δ 0.25 (d, J ) 6.4 Hz, 3 H), 0.79 (d, J ) 6.8
Hz, 3 H), 0.92 (d, J ) 6.8 Hz, 3 H), 0.95 (d, J ) 6.8 Hz, 3 H),
1.12 (m, 1 H), 1.21 (d, J ) 6.0 Hz, 6 H), 1.33 (m, 1 H), 1.47 (m,
1 H), 1.63 (m, 1 H), 2.33 (d, J ) 7.8 Hz, 1 H), 2.75 (m, 1 H), 3.77
(dd, J ) 11, 2.6 Hz, 1 H), 5.04 (dd, J ) 13.6 Hz, 1 H), 5.23 (d, J
) 13.6 Hz, 1 H), 6.83 (d, J ) 6.4 Hz, 1 H), 7.45 (m, 5 H), 8.79 (s,
1 H); 13C NMR (CD3OD) δ 19.4, 19.7, 21.1, 21.5, 22.8, 23.6, 25.1,
32.1, 31.2, 37.9, 43.9, 57.5, 63.5, 130.6, 127.9, 130.7, 130.8, 131.3,
reported to form quaternary pyridinium salts without any
dihydropyridiniums observed.12 In this work, an aqueous
medium with the catalysis of lanthanide triflates allows
the Chichibabin reaction to proceed under milder condi-
tions and enables the isolation of 2,3-dihydropyridinium
intermediates.
The reaction apparently proceeds through sequential
condensations of three molecules of the Schiff base
formed between the aldehyde and the amine (Scheme 3).
Pyridinium products 3b-7b were presumed to result
from oxidation or disproportionation of their correspond-
ing precursors, 2,3-dihydropyridiniums. The lanthanide
triflates serve as stable Lewis acids and potentially can
catalyze several individual steps in the reaction sequence.
Work is currently underway to map the detailed mecha-
nistic picture.
138.8, 144.4, 166.1; MS m/e 312 (M+); HRMS calcd for C22H34
N
312.2691, found 310.2698. 3b: UV λmax 282 nm (ꢀ 3150); IR
λ-1max (cm-1) 1633, 1504, 1458; 1H NMR (CD3OD) δ 0.99 (d, J )
6.8 Hz, 6 H), 1.31 (m, 12 H), 2.10 (m, 1 H), 3.01 (d, J ) 7.6 Hz,
2 H), 3.16 (m, 1 H), 3.30 (m, 1 H), 5.90 (s, 2 H), 7.12, 7.39 (m, 5
H), 8.44 (s, 1 H), 8.67 (s, 1 H); 13C NMR (CD3OD) δ 22.4, 23.1,
23.5, 30.8, 31.1, 32.9, 37.3, 63.1, 127.8, 130.0, 130.2, 130.7, 143.4,
144.2, 147.5, 151.8; MS m/e 310 (M+); HRMS calcd for C22H32
N
310.2535, found 310.2524.
3,5-Dibu tyl-2-pen tyl-N-ben zyl-2,3-dih ydr opyr idin iu m (4a)
a n d 3,5-Dibu tyl-2-p en tyl-N-ben zylp yr id in iu m (4b). Pre-
pared from hexanal and benzylamine hydrochloride. 4a : UV
λmax 291 nm (ꢀ 2860); IR λ-1
(cm-1) 1663, 1587, 1504, 1458,
max
1
1378; H NMR (CD3OD) δ 0.64 (t, J ) 7.2 Hz, 3 H), 0.76 (m, 1
H), 0.90 (m, 6 H), 1.11 (m, 1 H), 1.35 (m, 12 H), 1.50 (m, 2 H),
1.76 (m, 2 H), 2.35 (m, 2 H), 2.58 (m, 1 H), 3.56 (t, J ) 7.0 Hz,
1 H), 4.94 (d, J ) 13.6 Hz, 1 H), 5.14 (d, J ) 13.6 Hz, 1 H), 6.71
(d, J ) 6.4 Hz, 1 H), 7.44 (m, 5 H), 8.67 (s, 1 H); 13C NMR (CD3-
OD) δ 14.0, 14.2, 23.0, 23.3, 23.4, 26.2, 28.6, 30.0, 31.7, 32.3,
32.4, 32.5, 38.1, 60.4, 63.7, 130.7, 131.1, 131.2, 147.7, 166.5; MS
m/e 354 (M+), 282, 91 (100); HRMS calcd for C25H40N 354.3161,
In summary, lanthanide-promoted condensation be-
tween aldehydes and amine hydrochlorides in aqueous
solution affords a simple approach for the preparation
of 2,3,5-trisubstituted 2,3-dihydropyridinium and pyri-
dinium derivatives.
found 354.3159. 4b: UV λmax 281 nm (ꢀ 2420); IR λ-1
(cm-1
)
max
1640, 1504, 1458, 1378; 1H NMR (CD3OD) δ 0.79 (t, J ) 7.2 Hz,
3 H), 0.90 (m, 6 H), 1.18-1.45 (m, 10 H), 1.59 (m, 4 H), 2.74 (t,
J ) 7.6 Hz, 4 H), 2.94 (m, 2 H), 5.80 (s, 2 H), 7.11 (d, J ) 4.0 Hz,
2 H), 7.39 (m, 3 H), 8.23 (s, 1 H), 8.63 (s, 1 H); 13C NMR (CD3-
OD) δ 14.0, 23.1, 23.5, 29.0, 30.3, 32.6, 32.7, 32.8, 33.5, 33.7,
62.8, 127.9, 130.2, 130.6, 135.3, 142.5, 144.6, 144.9, 147.9, 156.2;
MS m/e 352 (M+), 91 (100); HRMS calcd for C25H38N 352.3004,
found 352.3001.
Exp er im en ta l Section
Gen er a l Meth od s. All unspecified reagents were from
commercial resources. 1H and 13C NMR spectra were recorded
at 400 MHz. Mass spectra (CI, EI or FAB) were performed by
the mass spectrometry facility at the University of California,
Riverside. UV spectra were recorded in methanol.
Syn th esis of 1a -5a a n d 3b-7b. Gen er a l P r oced u r e. To
a vial containing 4 mL of 0.25 M lanthanide triflate aqueous
solution were added an aldehyde (8 mmol) and an amine
hydrochloride (2 mmol). The reaction vial was sealed tightly
and shaken for 24 h. The reaction mixture was extracted with
ethyl acetate (5 mL × 3), and the combined organic layers were
washed with brine (Table 2, entries 1-2, 5-7) or water (Table
2, entry 3) and dried over anhydrous MgSO4. After removal of
solvents in vacuo, the oil was chromatographed, eluting with
hexane, ethyl acetate, and methanol (4/1/0, 0/1/0, and 0/10/1)
sequentially, to give the products.
3,5-Dibu tyl-2-pen tyl-N-pr opyl-2,3-dih ydr opyr idin iu m (5a)
a n d 3,5-Dibu tyl-2-p en tyl-N-p r op ylp yr id in iu m (5b). Pre-
pared from hexanal and propylamine hydrochloride. 5a : UV
λmax 293 nm (ꢀ 2820); IR λ-1
(cm-1) 1663, 1504, 1458, 1397;
max
1H NMR (CD3OD) δ 0.92 (m, 9 H), 1.04 (t, J ) 7.6 Hz, 3 H),
1.20-1.58 (m, 16 H), 1.72 (m, 3 H), 1.91 (m, 1 H), 2.35 (t, J )
8.0 Hz, 2 H), 2.75 (m, 1 H), 3.84 (t, J ) 7.6 Hz, 2 H), 3.90 (t, J
) 6.8 Hz, 1 H), 6.81 (d, J ) 6.4 Hz, 1 H), 8.41 (s, 1 H); 13C NMR
(CD3OD) δ 10.9, 13.9, 14.0, 14.2, 22.7, 22.9, 23.3, 23.4, 26.7, 29.1,
30.9, 31.7, 32.4, 32.5, 33.1, 38.1, 61.7, 62.9, 132.4, 147.3, 166.3;
MS m/e 306 (M+); HRMS calcd for C21H40N 306.3161, found
306.3163. 5b: UV λmax 281 nm (ꢀ 2410); IR λ-1
1633, 1504,
3,5-Dim et h yl-2-et h yl-N-b en zyl-2,3-d ih yd r op yr id in iu m
(1a ). Prepared from propionaldehyde and benzylamine hydro-
max
1
1458, 1379; H NMR (CD3OD) δ 0.96 (m, 9 H), 1.08 (t, J ) 7.2
Hz, 3 H), 1.45 (m, 8 H), 1.67 (m, 6 H), 2.00 (m, 2 H), 2.79 (m, 4
H), 3.07 (m, 2 H), 4.52 (t, J ) 8.0 Hz, 2 H), 8.21 (s, 1 H), 8.60 (s,
1 H); 13C NMR (CD3OD) δ 10.9, 14.0, 14.1, 23.1, 23.5, 25.9, 29.4,
29.7, 32.7, 32.8, 33.4, 33.5, 60.7, 142.3, 143.8, 147.1, 155.3; MS
m/e 304 (M+); HRMS calcd for C21H38N 304.3004, found 304.3008.
3,5-Dip h en yl-2-ben zyl-N-ben zylp yr id in iu m (6b). Pre-
pared from benzylacetaldehyde and benzylamine hydrochlo-
ride: UV λmax 262 nm (ꢀ 5830); 1H NMR (CDCl3) δ 1.59 (s, 2 H),
6.10 (s, 2 H), 7.38, 7.55, 7.73 (m, 20 H), 8.55 (s, 1 H), 9.10 (s, 1
H); MS m/e 412 (M+), 322(100); HRMS calcd for C31H24N (M -
H) 411.1987, found 411.1981.
chloride: UV λmax 293 nm (ꢀ 2120); IR λ-1
(cm-1) 1602, 1458,
max
1378; 1H NMR (CD3OD) δ 0.59 (d, J ) 7.2 Hz, 3 H), 0.96 (t, J )
7.6 Hz, 3 H), 1.79 (m, 2 H), 2.05 (s, 3 H), 2.75 (m, 1 H), 3.53 (dd,
J ) 9.2, 4.8 Hz, 1 H), 4.98 (d, J ) 13.6 Hz, 1 H), 5.16 (d, J )
13.6 Hz, 1 H), 6.74 (d, J ) 6.4 Hz, 1 H), 7.45 (m, 3 H), 7.52 (m,
2 H), 8.60 (s, 1 H); 13C NMR (CD3OD) δ 10.3, 17.6, 17.7, 23.7,
32.6, 63.9, 64.7, 127.8, 130.5, 131.1, 132.2, 148.5, 166.7; MS m/e
228 (M+); HRMS calcd for C16H22N, 228.1752, found 228.1759.
3,5-Diet h yl-2-p r op yl-N-b en zyl-2,3-d ih yd r op yr id in iu m
(2a ). Prepared from butanal and benzylamine hydrochloride:
UV λmax 293 nm (ꢀ 2320); IR λ-1
(cm-1) 1663, 1458, 1378; 1H
NMR (CD3OD) δ 0.44 (t, J ) 7.2 Hz, 3 H), 0.68 (m, 1 H), 0.94 (t,
max
3,5-Di(2′-octen yl)-2-(3′-n on en yl)-N-ben zylpyr idin iu m (7b).
Prepared from 4-decenal and benzylamine hydrochloride: UV
(12) Suyama, K.; Adachi, S. J . Org. Chem. 1979, 44, 1417.
λ
max 286 nm (ꢀ 2580); IR λ-1max (cm-1) 1633, 1504, 1458; 1H NMR