998
M. Alajarín et al.
LETTER
(8) (a) Hua, D. H.; Sinai-Zingde, G.; Venkataraman, S. J. Am.
Chem. Soc. 1985, 107, 4088. (b) Hua, D. H. J. Am. Chem.
Soc. 1986, 108, 3835. (c) Hua, D. H.; Venkataraman, S.;
Chan-Yu-King, R.; Paukstelis, J. V. J. Am. Chem. Soc. 1988,
110, 4741. (d) Hua, D. H.; Venkataraman, S.; Ostrander, R.
A.; Sinai, G.-Z.; McCann, P. J.; Coulter, M. J.; Xu, M. R. J.
Org. Chem. 1988, 53, 507.
(9) (a) Choi, S.; Yang, J. D.; Ji, M.; Choi, H.; Kee, M.; Ahn, K.-
H.; Byeon, S.-H.; Baik, W.; Koo, S. J. Org. Chem. 2001, 66,
8192. (b) Lidén, A. A.; Krüger, L.; Bäckvall, J.-E. J. Org.
Chem. 2003, 68, 5890.
(10) Snider, B. B. J. Org. Chem. 1981, 46, 3155.
(11) Moissenkov, A. M.; Dragan, V. A.; Koptenkova, V. A.;
Veselovsky, V. V. Synthesis 1987, 814.
(12) Andersen, K. K. In Comprehensive Organic Chemistry;
Barton, D.; Ollis, W. D., Eds.; 1st ed., Vol. 3, Jones, N., Ed.;
Pergamon Press Ltd.: Oxford, 1979, 321.
previously reported is the use of easily available and sta-
ble sulfinylating reagents, N-unsubstituted sulfinamides
4, for which no applications in C-S bond forming reac-
tions have been reported before.
Acknowledgment
This work was supported by MCYT-FEDER (Project BQU2001-
0010) and Fundación Séneca-CARM (Project PI-1/00749/FS/01).
A. P. thanks to the European Comission for a Marie Curie fel-
lowship (contract HPMF-CT-1999-00126). J. C. is grateful to the
Ministerio de Educación, Cultura y Deporte of Spain for a predoc-
toral fellowship. Finally, we thank Acedesa-Takasago (El Palmar,
Spain) for a generous gift of the monoterpenes.
References
(13) Sulfinamides can be easily prepared by reaction of sulfinyl
chlorides with NH3, see: (a) Andersen, K. K. In
(1) (a) Synthesis of Sulfones, Sulfoxides, and Cyclic Sulfides;
Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, 1994.
(b) Organosulfur Chemistry: Synthetic Aspects; Page, P.,
Ed.; Academic: London, 1995. (c) Cremlyn, R. J. In An
Introduction to Organosulfur Chemistry; Wiley-VCH:
Weinheim, 1996. (d) Mikolajczk, M.; Drabowicz, J.;
Kielbasinski, P. In Chiral Sulfur Reagents: Applications in
Asymmetric and Stereoselective Synthesis; Mikolajczk, M.,
Ed.; CRC Press: Boca Raton, 1996.
(2) (a) Davis, F. A.; Zhou, P.; Chen, B. C. Chem. Soc. Rev. 1998,
27, 13. (b) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc.
Chem. Res. 2002, 35, 984.
(3) (a) Borzilleri, R. M.; Weinreb, S. M. Synthesis 1995, 347.
(b) Weinreb, S. M. Top. Curr. Chem. 1997, 190, 132.
(4) Davis, F. A.; Qu, J.; Srirajan, V.; Joseph, R.; Titus, D. D.
Heterocycles 2002, 58, 251.
(5) Recently, this catalytic system has been reported to be highly
efficient in the catalysis of imino ene reactions of N-tosyl-
benzaldimine: (a) Yamanaka, M.; Nishida, A.; Nakagawa,
M. Org. Lett. 2000, 2, 159. (b) Yamanaka, M.; Nishida, A.;
Nakagawa, M. J. Org. Chem. 2003, 68, 3112.
(6) Evans, D. A.; Andrews, G. C. Acc. Chem. Res. 1974, 7, 147.
(7) (a) Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L. J.
Chem. Soc., Chem. Commun. 1986, 366. (b) Hua, D. H.;
Venkataraman, S.; Coulter, M. J.; Sinai-Zingde, G. J. Org.
Chem. 1987, 52, 719. (c) Koprowski, M.; Krawczyk, E.;
Skowroñska, A.; McPartlin, M.; Choi, N.; Radojevic, S.
Tetrahedron 2001, 57, 1105. (d) Nokami, J.; Kataoka, K.;
Shiraishi, K.; Osafune, M.; Hussain, I.; Sumida, S. J. Org.
Chem. 2001, 66, 1228. (e) Kim, T.; Kim, K.; Park, Y. J. Eur.
J. Org. Chem. 2002, 493. (f) Chuard, R.; Giraud, A.;
Renaud, P. Angew. Chem. Int. Ed. 2002, 41, 4323.
Comprehensive Organic Chemistry; Barton, D.; Ollis, W.
D., Eds.; 1st ed., Vol. 3, Jones, N., Ed.; Pergamon Press Ltd.:
Oxford, 1979, 326. (b) Backes, B. J.; Dragoli, D. R.; Ellman,
J. A. J. Org. Chem. 1999, 64, 5472.
(14) Typical Procedure for the Synthesis of Allylic Sulfoxides
3: To a solution of p-toluenesulfinamide 1a (0.15 g; 0.966
mmol) in dry CH2Cl2 (20 mL), Yb(OTf)3 (0.30 g; 0.483
mmol), a-methyl styrene (0.34 g; 2.899 mmol) and TMSCl
(0.11 g; 0.966 mmol) were sequentially added. After the
addition, the reaction mixture was stirred at r.t. for 16 h. The
inorganic salts were removed by filtration and the filtrate
was collected. The solvent was evaporated to dryness and
the residue purified by silica gel chromatography eluting
with 1:3 to 1:1 EtOAc–hexanes. An analytically pure sample
was obtained by recrystallization from Et2O/n-pentane
(white prisms). Yield (0.22 g, 90%); mp 63–65 °C. IR (neat):
1620, 1597, 1494, 1085, 1045, 810, 778, 701 cm–1. 1H NMR
(200 MHz, CDCl3): d = 2.38 (s, 3 H, CH3), 3.82 (d, 1 H,
2J = 12.7 Hz, CH2SO), 4.07 (d, 1 H, 2J = 12.7 Hz, CH2SO),
5.09 (s, 1 H, = CH2), 5.53 (s, 1 H, = CH2), 7.23–7.49 (m, 9
H, aromatics). 13C {1H} NMR (50 MHz, CDCl3): d = 21.3
(q), 64.7 (t), 119.7 (t), 124.3 (2 × d), 126.0 (2 × d), 128.0 (d),
128.4 (2 × d), 129.5 (2 × d), 137.5 (s), 138.9 (s), 140.2 (s),
141.6 (s). Anal. Calcd for C16H16SO: C, 74.96; H, 6.29; S,
12.51. Found: C, 74.72; H, 6.47; S, 12.20.
(15) (a) Thomas, A. F.; Heathcock, C. H.; ApSimon, J. W.;
Hooper, J. W. In The Total Synthesis of Natural Products,
Vol 2; ApSimon, J. W., Ed.; Wiley: New York, 1973.
(b) Savu, P. M.; Katzenellenbogen, J. A. J. Org. Chem.
1981, 46, 239. (c) Masaki, Y.; Hashimoto, K.; Kaji, K.
Tetrahedron 1984, 40, 3481.
(16) Knight, D. J.; Lin, P.; Russell, S. T.; Whitham, G. H. J.
Chem. Soc., Perkin Trans. 1 1987, 2701.
(17) (a) Rautenstrauch, V. J. Chem. Soc., Chem. Commun. 1970,
526. (b) Wang, W.-Y.; Reusch, W. Tetrahedron 1988, 44,
1007.
Synlett 2004, No. 6, 995–998 © Thieme Stuttgart · New York