Table 1 Percent dealkylation observed with boron and aluminium
bromide chelates. (Standard deviations from multiple integration
determinations are given in parentheses)a
tial support from the University of Kentucky Tracy Farmer
Center for the Environment is acknowledged.
Salben(tBu)[BBr2]2
Salen(tBu)AlBr
References
%
Time/h
%
Time/h
Alkyl group
1 B. Walker, Jr and J. Nidiry, Inhalation Toxicol., 2002, 14, 975–990.
2 Y. C. Yang, J. A. Baker and J. R. Ward, Chem. Rev., 1992, 92,
1729–1743.
3 Y.-C. Yang, Acc. Chem. Res., 1999, 32, 109–115.
4 T. Wagner-Jauregg, B. E. Hackley, Jr, T. A. Lies, O. O. Owens and
R. Proper, J. Am. Chem. Soc., 1955, 77, 922–929.
5 J. R. Ward, J. W. Hovanec, J. M. Albizo, L. L. Szafraniec and W.
T. Beaudry, J. Fluorine Chem., 1991, 51, 277–282.
6 R. L. Gustafson, S. J. Chaberek and A. E. Martell, J. Am. Chem.
Soc., 1963, 67, 576–582.
7 N. Sethunathan and T. Yoshida, Can. J. Microbiol., 1973, 19,
873–875.
8 K. D. Racke and J. R. Coats, J. Agric. Food Chem., 1987, 35,
94–99.
9 R. Siddaramappa, K. P. Rajaram and N. Sethunathan, Appl.
Microbiol., 1973, 26, 846–847.
VX
GB
GD
Diazinon
Ethyl
74.7(7)
0
0
10.3(6)
0
100
0.7
1.0
6.5
1.7
0.5
1.5
1.0
1.3
57.1(1) 3.9
24.5(2) 1.2
62.6(2) 6.2
46.7(3) 1.0
i-Propyl
Pinacolyl
Ethyl
Malathion Methyl
0
2.0
EMPPT
DEPPT
HMPA
Ethyl
Ethyl
Methyl
10.5(1) 0.7
10.1(7) 1.2
70.8(4)
0
0
1.2
a
VX = O-ethyl-S-[2-(diisopropylamino)ethyl] methylphosphonothio-
late; GB or Sarin = O-isopropyl methylphosphonofluoridate; Soman
or GD = 3,3-dimethyl-2-butyl methylphosphonofluoridate; DEPPT
= O,S-diethyl phenylphosphonothioate; EMPPT = O-ethyl-S-methyl
phenylphosphonothioate; HMPA = hexamethylphosphoramide.
10 L. L. Harper, C. S. McDaniel, C. E. Miller and J. R. Wild, Appl.
Environ. Microbiol., 1988, 54, 2586–2589.
11 J. J. DeFrank, Organophosphorus Cholinesterase Inhibitors: De-
toxification by Microbial Enzymes, in Applications of Enzymes
Biochemistry, ed. J. W. Kelly and T. O. Baldwin, Plenum Press,
New York, 9th edn, 1999, pp. 165–180.
12 J. E. Kolakowski, J. J. Defrank, S. P. Harvey, L. L. Szafraniec, W.
T. Beaudry, K. Lai and J. R. Wild, Biocatal. Biotransform., 1997,
15, 297–312.
13 G. W. Wagner, L. R. Procell, R. J. O’Connor, S. Munavalli, C. L.
Carnes, P. Kapoor and K. J. Klabunde, J. Am. Chem. Soc., 2001,
123, 1636–1644.
14 S. P. Decker, J. S. Klabunde, A. Khaleel and K. J. Klabunde,
Envion. Sci. Technol., 2002, 36, 762–768.
15 M. B. Mitchell, V. N. Sheinkar and W. W. Cox, Jr, J. Phys. Chem.
C., 2007, 111, 9417–9426.
16 D. J. Williams, V. L. H. Bevilacqua, W. R. Creasy, D. J. McGar-
vey, K. J. Maguire, J. S. Rice, C. A. S. Brevett, C. L. De Leon, M.
J. Sanders and H. D. Durst, Potential Usage of Aqueous Alum for
Decomposition of Chemical Warfare Agents. Part 1: Reactions with
V- and G-Type Agents, ECBC-TR-431, Edgewood Chemical Bio-
logical Center, Aberdeen Proving Ground, MD, USA, 2005.
17 T. S. Keizer, L. J. De Pue, S. Parkin and D. A. Atwood, J.
Organomet. Chem., 2003, 666, 103–109.
which may have been a complexed species of either Sarin itself
or of some other derivative.
In conclusion, binuclear boron Salen compound salben
(tBu)[BBr2]2 and mononuclear aluminium Salen compound
salen(tBu)AlBr have been used for the dealkylation reactions
of nerve gas agents and pesticides and their simulants under
very mild conditions. The salen boron compound was very
effective in cleaving the VX simulants EMPPT and DEPPT
and nerve agent VX. The salen aluminium compound was
effective in cleaving the nerve agents VX and GD and the
pesticide Diazinon. Neither of the two salen compounds could
cleave the P–N–C bond in HMPA. This study is the first
application of any Schiff base chelate compound to the cleav-
ing of nerve gas agents and pesticides (Table 1) Note that all of
these reactions were conducted in equimolar quantities. It
would be expected that much greater P–O–C bond cleavage
would take place in shorter periods of time using and excess of
the salen chelate. These studies are currently being conducted.
18 T. S. Keizer, L. J. De Pue, S. Parkin and D. A. Atwood, Can. J.
Chem., 2002, 80, 1463–1468.
19 T. S. Keizer, L. J. De Pue, S. Parkin and D. A. Atwood, J. Am.
Chem. Soc., 2002, 124, 1864–1865.
20 A. Mitra, L. J. DePue, S. Parkin and D. A. Atwood, J. Am. Chem.
Soc., 2006, 128, 1147–1153.
Acknowledgements
This work was supported by the Kentucky Science and
Engineering Foundation (KSEF grant 148-502-04-100). Par-
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2008
New J. Chem., 2008, 32, 783–785 | 785