Wang et al.
FULL PAPER
The fluorescence spectra of fluorene-terminated
monodendrons 10, 11 are excited at 310 nm where most
of the radiation is absorbed by the phenylacetylene
monodendrons in dichloromethane. The fluorescence
maximum of 10, 11 is around 370 nm which is similar
to phenyl-terminated dendrimers. We can not find the
fluorescence of fluorene at 300— 350 nm.27 This is con-
sistent with the absorption spectra where the distinct
absorption bands of fluorene do not appear. However,
distinct absorption bands and fluorescence bands can be
found in perylene-terminated dendrimers because of
large HOMO-LUMO energy gap difference between
phenylacetylene monodendron and perylene. Here we
find phenylacetylene dendrimers containing a core with
a larger HOMO-LUMO energy gap exhibit extraordi-
nary photophysical properties. For phenylacetylene
monodendrons are the main skeleton in 10, 11, the
fluorescence maximum does not shift significantly
compared with phenyl-terminated dendrimers (the fluo-
rescence maximum is around 360 nm). With extending
conjugation from 10 to 11, the fluorescence maximum
only shifts 8 nm. For higher generation, the fluorescence
intensity decreases significantly. This is analogous to
phenyl and perylene-terminated dendrimers. The fluo-
rescence quantum yields are determined with
2-aminopyridine as a standard when excited at 310 nm.
Compound 10 exhibits extremely high quantum yield of
References
1
2
3
García-Martínez, J. C.; Díez-Barra, E.; Rodríguez-López, J.
Curr. Org. Synth. 2008, 5, 267.
Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc.
1996, 118, 9635.
Kopelman, R.; Shortreed, M.; Shi, Z.-Y.; Tan, W.; Xu, Z.;
Moore, J. S.; Bar-Haim, A.; Klafter, J. Phys. Rev. Lett. 1997,
78, 1239.
4
5
Ahn, T. S.; Thompson, A. L.; Bharathi, P.; Müeller, A.;
Bardeen, C. J. J. Phys. Chem. B 2006, 110, 19810.
Clifford, J. N.; Gégout, A.; Zhang, S.; Freitas, R. P.; Urbani,
M.; Holler, M.; Ceroni, P.; Nierengarten, J.-F.; Armaroli, N.
Eur. J. Org. Chem. 2007, 5899.
6
7
Gorman, C. B.; Smith, J. C. Polymer 2000, 41, 675.
Rodríguez, J. G.; Esquivias, J.; Lafuente, A.; Díaz, C. J.
Org. Chem. 2003, 68, 8120.
8
9
Itoh, T.; Maemura, T.; Ohtsuka, Y.; Ikari, Y.; Wildt, H.;
Hirai, K.; Tomioka, H. Eur. J. Org. Chem. 2004, 2991.
Yamaguchi, Y.; Ochi, T.; Miyamura, S.; Tanaka, T.; Koba-
yashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z.-I. J.
Am. Chem. Soc. 2006, 128, 4504.
10 Wang, P.-W.; Liu, Y.-J.; Devadoss, C.; Bharathi, P.; Moore,
J. S. Adv. Mater. 1996, 8, 237.
11 Cha, S. W.; Choi, S.-H.; Kim, K.; Jin, J.-I. J. Mater. Chem.
2003, 13, 1900.
12 Pugh, V. J.; Hu, Q.-S.; Pu, L. Angew. Chem., Int. Ed. 2000,
39, 3638.
13 Pugh, V. J.; Hu, Q.-S.; Zuo, X.; Lewis, F. D.; Pu, L. J. Org.
Chem. 2001, 66, 6136.
14 Lüing, U.; Eggert, J. P. W.; Hagemann, K. Eur. J. Org.
Chem. 2006, 2747.
15 Kaneko, T.; Horie, T.; Asano, M.; Aoki, T.; Oikawa, E.
Macromolecules 1997, 30, 3118.
16 Kaneko, T.; Horie, T.; Asano, M.; Matsumoto, S.; Yama-
moto, K.; Aoki, T.; Oikawa, E. Polym. Adv. Technol. 2000,
11, 685.
-
0.61 which is higher than any phenyl-terminated
dendrimers (the highest quantum yield is 0.31). With
increasing generation, the quantum yield decreases sig-
nificantly, which is consistent with the conclusion that
the higher generation dendrimers normally have lower
quantum yields.2
17 Kaneko, T.; Yamamoto, K.; Asano, M.; Teraguchi, M.;
Aoki, T. J. Membr. Sci. 2006, 278, 365.
Conclusion
18 Liu, L.; Chen, Z.-X.; Liu, S.-Z.; Wong, W.-Y. Chin. J.
Chem. 2006, 24, 1020.
19 Chen, X.; Chen, X.; Zhao, Z.; Lü, P.; Wang, Y. Chin. J.
Chem. 2009, 27, 971.
20 Tang, S.; Liu, M.; Lu, P.; Xia, H.; Li, M.; Xie, Z.; Shen, F.;
Gu, C.; Wang, H.; Yang, B.; Ma, Y. Adv. Funct. Mater.
2007, 17, 2869.
21 Lai, W.-Y.; Xia, R.; He, Q.-Y.; Levermore, P. A.; Huang,
W.; Bradley, D. D. C. Adv. Mater. 2009, 21, 355.
22 Wu, Z.; Xiong, Y.; Zou, J.; Wang, L.; Liu, J.; Chen, Q.;
Yang, W.; Peng, J.; Cao, Y. Adv. Mater. 2008, 20, 2359.
23 Jiang, Z.; Yao, H.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.;
Qin, J.; Ma, D. Org. Lett. 2009, 11, 2607.
24 Lee, S. H.; Nakamura, T.; Tsutsui, T. Org. Lett. 2001, 3,
2005.
25 Xu, Z.; Kahr, M.; Walker, K. L.; Wilkins, C. L.; Moore, J. S.
J. Am. Chem. Soc. 1994, 116, 4537.
26 Bharathi, P.; Patel, U.; Kawaguchi, T.; Pesak, D. J.; Moore,
J. S. Macromolecules 1995, 28, 5955.
27 Wong, K.-T.; Chen, Y.-M.; Lin, Y.-T.; Su, H.-C.; Wu, C.-C.
Org. Lett. 2005, 7, 5361.
We have synthesized fluorene-core phenylacetylene
dendrimers 9— 11 by Pd/Cu-catalyzed cross-coupling.
These dendrimers contain a core with a larger
HOMO-LUMO energy gap. Their photophysical prop-
erties are extraordinary. In the absorption spectra, the
molar coefficient around 310 nm which belongs to
phenylacetylene monodendrons increases with increas-
ing generation. However, there exists a new absorption
band around 340 nm whose molar coefficient decreases
with increasing generation. The band-gaps of 9— 11 are
3.54, 3.43 and 3.02 eV, respectively. When 10— 11
were excited at 310 nm, they displayed an emission at
about 370 nm. In addition, the fluorescence quantum
yield of 10 is as high as 0.61. The fluorescence quantum
yield decreases with increasing generation. The findings
herein reported would be important in phenylacetylene
dendrimers. Further study along the line using 10— 11
as host material for phosphorescent OLEDs is currently
in progress.
(E0909282 Cheng, F.; Lu, Z.)
704
© 2010 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2010, 28, 699— 704