C O M M U N I C A T I O N S
Chart 1. Structures of meso-Aryl Hexaphyrins 1 and 2 and Their
Biscopper Complexes 3, 4, 5, and 6
conformation, electronic demands, and the number of NH available
for the metalation. Metalation of meso-aryl-substituted hexaphyrins
and other expanded porphyrins is an attractive subject and worthy
of further investigation.
Acknowledgment. This work was supported by Grant-in-Aids
for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology of Japan. S.S. thanks the JSPS for
the Research Fellowship for Young Scientists. V.G.A. thanks the
JSPS for the postdoctoral fellowship.
Supporting Information Available: Synthetic procedures and
spectral data of complexes 3, 4, 5, and 6, including magnetic
susceptibility and ESR spectra (PDF). CIF files for the X-ray structural
analysis. This material is available free of charge via the Internet at
References
(1) (a) Jasat, A.; Dolphin, D. Chem. ReV. 1997, 97, 2267. (b) Lash, T. D.
Angew. Chem., Int. Ed. 2000, 39, 1763. (c) Furuta, H.; Maeda, H.; Osuka,
A. Chem. Commum. 2002, 1795. (d) Sessler, J. L.; Seidel, D. Angew.
Chem., Int. Ed. 2003, 42, 5134.
(2) Dolphin, D.; Rettig, S. J.; Tang, H.; Wijesekera, T.; Xie, L. Y. J. Am.
Chem. Soc. 1993, 115, 9301.
(3) (a) Werner, A.; Michels, M.; Zander, L.; Lex, J.; Vogel, E. Angew. Chem.,
Int. Ed. 1999, 38, 3650. (b) Vogel, E.; Michels, M.; Zander, L.; Lex, J.;
Tuzun, N. S.; Houk, K. N. Angew. Chem., Int. Ed. 2003, 42, 2857. (c)
Tanaka, Y.; Hoshino, W.; Shimizu, S.; Youfu, K.; Aratani, N.; Maruyama,
N.; Fujita, S.; Osuka, A. J. Am. Chem. Soc. 2004, 126, 3046. (d) Veauthier,
J. M.; Cho, W.-S.; Lynch, V. M.; Sessler, J. L. Inorg. Chem. 2004, 43,
1220.
(4) (a) Gossauer, A. Bull. Soc. Chim. Belg. 1983, 92, 793. (b) Charrie`re, R.;
Jenny, T. A.; Rexhausen, H.; Gossauer, A. Heterocycles 1993, 36, 1561.
(5) (a) Sessler, J. L.; Weghorn, S. J.; Hisaeda, Y.; Lynch, V. Chem. Eur. J.
1995, 1, 56. (b) Weghorn, S. J.; Sessler, J. L.; Lynch, V.; Baumann, T.
F.; Sibert, J. W. Inorg. Chem. 1996, 35, 1089. (c) Hannah, S.; Seidel, D.;
Sessler, J. L.; Lynch, V. Inorg. Chim. Acta 2001, 317, 211.
(6) Srinivasan, A.; Ishizuka, T.; Osuka, A.; Furuta, H. J. Am. Chem. Soc.
2003, 125, 878.
the presence of a small amount of H218O, which afforded 18O-
incorporated products as determined by the FAB-MS spectros-
copy.13
Complexes 3, 4, and 5 exhibit magnetic behaviors typical of
antiferromagnetically coupled biscopper(II) pairs in the variable-
temperature magnetic susceptibility measurements (2-300 K), while
complex 6 exhibits temperature-independent susceptibility øpT value
(0.4229 emu K mol-1), which corresponds to S ) 1/2 state in
agreement with Cu(I)-Cu(II) mixed valence state (SI).14 The least-
squares fit of the experimental data through the Bleaney-Bowers
equation gave -J values of 8.27 cm-1 for 3, 87.6 cm-1 for 4, and
42.1 cm-1 for 5. Different -J values for 4 and 5 are interesting
despite the similar coordination environments and Cu-Cu distances.
Provided that magnetic interaction propagates predominantly
through the Cu-O-Cu bond for 4 and 5, the larger -J value in 4
compared with 5 may be explained in terms of more electron-
withdrawing ligand in 5. The small -J value in 3 may be ascribed
to the presence of the bridging chloride atom, which might act a
mediator of superexchange ferromagnetic interaction through
bridge.15,16 Alternatively, the square pyramidal coordination caused
by the chloride bridge may influence the magnetic interaction.
As noted above, the absorption spectra of 3-6 are less intense
compared with that of the aromatic hexaphyrin 1 (SI). Curiously,
very broad absorption bands around near-IR region are observed
in the spectra of 4 (λmax ) 1498 nm), 5 (λmax ) 1475 nm), and 6
(λmax ) 1842 nm) with molar absorption coefficients of ca. 104
cm-1 M-1. Though origins of these bands are not clear at this stage,
preliminary spectroelectrochemical studies suggest that they may
be ligand-derived absorptions.
(7) (a) Neves, M. G. P. M. S.; Martins, R. M.; Tome´, A. C.; Silvestre, A. J.
D.; Silva, A. M. S.; Fe´lix, V.; Drew, M. G. B.; Cavaleiro, J. A. S. Chem.
Commun. 1999, 385. (b) Shin, J.-Y.; Furuta, H.; Yoza, K.; Igarashi, S.;
Osuka, A. J. Am. Chem. Soc. 2001, 123, 7190. (c) Shimizu, S.; Shin,
J.-Y.; Furuta, H.; Ismael, R.; Osuka, A. Angew. Chem., Int. Ed. 2003, 42,
78.
(8) Reports (ref 3) on the metalation of octaphyrins encourage new potentials
of expanded porphyrins.
(9) Crystallographic data of 3:
C68H15N6F30Cu2O1.61Cl7, Mw ) 1886.88,
monoclinic, space group C2/c (No. 15), a ) 18.37(3), b ) 16.20(2), c )
25.17(4) Å, â ) 113.52(9)°, V ) 6866(16) Å3, Dc ) 1.825 g/cm3, Z ) 4,
R ) 0.095, Rw (I > 3.0σ(I)) ) 0.135, GOF ) 1.070 (I > 3.0σ(I)).
(10) Crystallographic data of 4: C67H12N6F30Cu2O4Cl2, Mw ) 1732.82, triclinic,
space group P1h (No. 2), a ) 13.979(3), b ) 15.646(3), c ) 15.932(4) Å,
R ) 78.753(4), â ) 73.062(4), γ ) 74.027(4)°, V ) 3179(1) Å3, Dc )
1.810 g/cm3, Z ) 2, R ) 0.104, Rw (all data) ) 0.265, GOF ) 1.097 (I
> 2.0σ(I)).
(11) Crystallographic data of 5: C69N6F42O1Cu2Cl6, Mw ) 2066.54, monoclinic,
space group P21/n (No.14), a ) 22.60(1), b ) 13.063(5), c ) 25.05(1)
Å, â ) 109.73(3)°, V ) 6960(5) Å3, Dc ) 1.972 g/cm3, Z ) 4, R )
0.092, Rw (all data) ) 0.310, GOF ) 1.269 (I > 2.0σ(I)).
(12) Crystallographic data of 6: C69H3N6F42Cu2O3Cl5, Mw ) 2066.11, triclinic,
space group P1h (No. 2), a ) 13.964(6), b ) 16.264(7), c ) 16.295(8) Å,
R ) 86.66(4), â ) 74.89(4), γ ) 84.63(4)°, V ) 3554(2) Å3, Dc ) 1.930
g/cm3, Z ) 2, R ) 0.065, Rw (I > 3.0σ(I)) ) 0.076, GOF ) 1.340 (I >
3.0σ(I)).
(13) The biscopper complexes 3, 4, and 5 formed in the presence of H218O
exhibit a cluster of peaks that fit well with the respective formula with
18O in the FAB-MS spectra. 3: 1603, calcd for C66H13F30N618OCu2:
1602.9307, 4: 1602, calcd for C66H12F30N618OCu2: 1601.9228, and 5:
1818, calcd for C66F42N618OCu2: 1817.8098 (SI).
(14) Consistent with this assignment, the ESR spectrum of 6 at 1.5 K can be
simulated as a single-spin system, and the XPS measurements revealed
that the satellite peak associated with Cu(II) ion in 6 was weaker in
comparison to 3 and 5 (SI).
(15) Geertsma, W.; Khomskii, D. Phys. ReV. B 1996, 54, 3011.
(16) Interestingly, a smaller antiferromagnetic interaction (-J ) 5 cm-1) was
reported for bis[(µ-chloro)copper(II)] amethyrin with a Cu-Cu distance
of 2.76 Å (ref 5b).
In summary, the hexaphyrins 1 and 2 can serve as an effective
ligand for two copper ions with unexpected but rather common
large structural changes to provide the gable biscopper complexes
3-6 that exhibit varying antiferromagnetic couplings. This is a new
mode of metalation of meso-aryl-expanded porphyrins. Relatively
similar structures of 3-6 are remarkable, considering a large
difference between 1 and 2 in respects of aromaticity, stable
JA046102X
9
J. AM. CHEM. SOC. VOL. 126, NO. 39, 2004 12281