C O M M U N I C A T I O N S
results also highlight the importance and sensitivity of noncovalent
interactions in the formation and dissolution of supramolecular
DNA-amphiphile assemblies. Current studies are focused on
optimizing the structure of the charge-reversal amphiphile and the
formulation conditions to further increase the gene transfection
efficiency. Importantly, these amphiphiles represent a conceptual
departure from the current cationic molecules under investigation,
and these results are likely to facilitate the design, development,
and evaluation of new synthetic nonviral vectors for the delivery
of therapeutic DNA.
Figure 4. Gene transfection results after 48 h in CHO cells.
Acknowledgment. This work was supported by the Army
As shown in Figure 3B, an increase in fluorescence over time is
seen for amphiphile 1, consistent with hydrolysis of the terminal
benzyl esters and disruption of the DNA-amphiphile supramolecu-
lar complex followed by re-intercalation of EtBr in DNA.34 No
increase in fluorescence over time is observed with amphiphiles 3 or
DOTAP, which possess a terminal amide linkage or methyl group,
respectively. The fluorescence data indicate that release of DNA
from the supramolecular assembly does not occur with amphiphiles
lacking a terminal hydrolyzable ester linkage and those linkages near
the cationic headgroup are less accessible to enzymatic hydrolysis.
Given the polar headgroup and long hydrophobic acyl chains
present in the structure of 1, this amphiphile is likely to form bilayer
vesicles in aqueous solution. Dispersion of 1 in water by sonication
leads to vesicles in the presence and absence of DNA. Vesicles
are not observed with the anionic amphiphile 2 (multicharged
surfactant) or cationic compound 4, which lacks the necessary
hydrophobic chains necessary for bilayer formation. A differential
scanning calorimetry (DSC) trace of hydrated amphiphile 1 shows
a phase-transition temperature at approximately 55 °C.
The X-ray diffraction spectrum at 25 °C of the hydrated vesicle
pellet of 1 shows three diffraction orders of a lamellar repeat period
of 5.22 ( 0.03 nm with a sharp wide-angle spacing of 0.46 ( 0.01
nm, which is characteristic of an ordered bilayer phase. Upon
addition of DNA, the lamellar repeat period (d ) 5.31 ( 0.14 nm)
and wide-angle spacing (0.46 ( 0.01 nm) do not significantly
change. This suggests a model, like that shown in Figure 1, where
the DNA is entrapped at the surface or at the interface between
multiwalled vesicles in solution. This is a different structural model
than for complexes of DNA with either DOTAP35 or cationic
triesters of phosphatidylcholine,16 where a smectic phase is formed
with the DNA chains located between the adjacent lipid bilayers
within the multilamellar liposome. Moreover, adding 1% w/w of
the multicharge anionic amphiphile 2 to DOPE bilayers affords a
broader phase-transition temperature compared to pure DOPE. This
result is consistent with the anionic surfactant, 2, formed in the
hydrolysis reaction of 1, destabilizing lipid bilayers.
Transfections experiments using the reporter gene, â-galactosi-
dase (â-gal, pVax-LacZ1, invitrogen) were performed with chinese
hamster ovarian (CHO) cells (see Supporting Information). As
shown in Figure 4, cationic amphiphile 1 was the most effective
vector for transfecting the â-galactosidase gene. Significantly,
compounds 2 through 4 showed minimal transfection activity
comparable to the negative control and naked DNA. DOTAP and
TransFast reagent both transfect DNA, but at lower levels. The
results observed with anionic amphiphile, 2, and cationic compound,
4, are consistent with the poor affinity of these compounds to bind
DNA. The lack of transfection with amphiphile 3 conveys the
important role the cleavable terminal ester linkages perform in these
amphiphiles. Preliminary screening on additional cells lines showed
that 1 can also facilitate the transport of DNA in human embryonic
kidney (HEK293) and erythroleukemic (K562) cell lines.
Research Office (M.W.G.) and Grant GM27278 from the National
Institutes of Health (T.J.M.). D.L. acknowledges Erin King for
technical assistance and the USDA and Cornell Advanced Center
for Biotechnology for financial support. We also thank Drs. Jun-
lin Guan and Zara Melkoumian for providing the cell lines.
Supporting Information Available: Complete experimental details,
characterization data, and cytotoxity experiments. This material is
References
(1) Luo, D.; Saltzman, W. M. Nat. Biotechnol. 2000, 18, 33-37.
(2) Behr, J. P. Acc. Chem. Res. 1993, 26, 274-278.
(3) NonViral Vectors for Gene Therapy; Huang, L., Hung, M.-C., Wagner,
E., Eds.; Academic Press: New York, 1999; p 442.
(4) Davis, M. E. Curr. Opin. Biotechnol. 2002, 13, 128-131.
(5) Self-Assembling Complexes for Gene DeliVery: From Laboratory to
Clinical Trial; Kabanov, A. V., Felgner, P. L., Seymour, L. W., Eds.;
Wiley & Sons: New York, 1998; p.
(6) Gene Therapy Therapeutic Mechanisms and Strategies; Templeton, N.
S., Lasic, D. D., Eds.; Marcel Dekker: New York, 2000; p 584.
(7) Robbins, P. D.; Tahara, H.; Ghivizzani, S. C. Trends Biotechnol. 1998,
16, 35-40.
(8) Marshall, E. Science 2000, 287, 565-567.
(9) Felgner, P. L. AdV. Drug DeliVery ReV. 1990, 5, 163-187.
(10) Miller, A. D. Angew. Chem., Int. Ed. 1998, 37, 1768-1785.
(11) Felgner, P. L.; Rhodes, G. Nature 1991, 349, 351-352.
(12) Remy, J.; Sirlin, C.; Vierling, P.; Behr, J. Bioconjugate Chem. 1994, 5,
647-654.
(13) Deshmukh, H. M.; Huang, L. New. J. Chem. 1997, 21, 113-124.
(14) Legendre, J. Y.; Szoka, F. C. J. Pharm. Res. 1992, 9, 1235-1242.
(15) Rui, Y.; Wang, S.; Low, P. S.; Thompson, D. H. J. Am. Chem. Soc. 1998,
120, 11213-11218.
(16) MacDonald, R. C.; Ashley, G. W.; Shida, M. M.; Rakhmanova, V. A.;
Tarahovsky, Y. S.; Kennedy, M. T.; Pozharski, E. V.; Baker, K. A.; Jones,
R. D.; Rosenzweig, H. S.; Choi, K. L.; Qiu, R.; McIntosh, T. J. Biophys.
J. 1999, 77, 2612-2629.
(17) Kabanov, A. V.; Kabanov, V. A. Bioconjugate Chem. 1995, 6, 7-20.
(18) Lynn, D. M.; Anderson, D. G.; Putman, D.; Langer, R. J. Am. Chem.
Soc. 2001, 123, 8155-8156.
(19) Choi, J. S.; Joo, D. K.; Kim, C. H.; Kim, K.; Park, J. S. J. Am. Chem.
Soc. 2000, 122, 474-480.
(20) Tang, M. X.; Redemann, C. T.; Szoka, F. C. Bioconjugate Chem. 1996,
7, 703-714.
(21) Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spinder, R.;
Tomalia, D. A.; Baker, J. R. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 4897-
4902.
(22) Luo, D.; Haverstick, K.; Belcheva, N.; Han, E.; Saltzman, W. M.
Macromolecules 2002, 35, 3456-3462.
(23) Wang, J.; Guo, X.; Xu, Y.; Barron, L.; Szoka, F. C. J. Med. Chem. 1998,
41, 2207-2215.
(24) Akinc, A.; Lynn, D. M.; Anderson, D. G.; Langer, R. J. Am. Chem. Soc.
2003, 125, 5316-5323.
(25) Wang, C.; Ge, Q.; Ting, D.; Nguyen, D.; Shen, H. R.; Chen, J.; Eisen, H.
N.; Heller, J.; Langer, R.; Putnam, D. Nat. Mater. 2004, 3, 190-196.
(26) Zhu, J.; Munn, R. J.; Nantz, M. H. J. Am. Chem. Soc. 2000, 122, 2645-
2646.
(27) Jones, R. A.; Cheung, C. Y.; Black, F. E.; Zia, J. K.; Stayton, P. S.;
Hoffman, A. S.; Wilson, M. R. Biochem. J. 2003, 372, 65-75.
(28) Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Harada, A.; Yamasaki, Y.;
Koyama, H.; Kataoka, K. J. Am. Chem. Soc. 2004, 126, 2355-2361.
(29) Lynn, D. M.; Langer, R. J. Am. Chem. Soc. 2000, 122, 10761-10768.
(30) Bell, P. C.; Bergsma, M.; Dolbnya, I. P.; Bras, W.; Stuart, M. C.; Rowan,
A. E.; Feiters, M. C.; Engberts, J. B. F. N. J. Am. Chem. Soc. 2003, 125,
1551-1558.
(31) Wang, J.; Mao, H. Q.; Leong, K. W. J. Am. Chem. Soc. 2001, 123, 9480-
9481.
(32) Tang,F.;Hughes,J.A.Biochem.Biophys.Res.Commun.1998,242,141-145.
(33) Cain, B. F.; Baguley, B. C.; Demmy, M. W. J. Med. Chem. 1978, 21,
658-668.
(34) The mechanism of esterase attack is under investigation.
(35) Radler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275,
810-814.
In summary, a charge-reversal or charge-switchable amphiphile
is shown to be an effective nonviral vector for gene delivery. These
JA0474906
9
J. AM. CHEM. SOC. VOL. 126, NO. 39, 2004 12197