C O M M U N I C A T I O N S
to generate a nickel-carbon bond quantitatively. The observations
in this paper suggest that any reagent having Lewis acidic character
present in the reaction medium could be a promoter for the
cyclization involving CdO and CdC double bonds coordinated to
a nickel(0) center
Acknowledgment. Partial support of this work through the
Asahi Glass Foundation (S.O.), Grants-in-Aid for Scientific Re-
search from Ministry of Education, Science, and Culture, Japan,
and the Japanese Government’s Special Coordination Fund for
Promoting Science and Technology is gratefully acknowledged.
Supporting Information Available: Experimental procedures
(PDF) and crystallographic information (CIF). This material is available
References
(1) Acetylene: (a) Oblinger, E.; Montgomery, J.; J. Am. Chem. Soc. 1997,
119, 9065-9066. (b) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am.
Chem. Soc. 2003, 125, 3442-3443. (c) Mahandru, G. M.; Liu, G.;
Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698-3699. Diene: (d)
Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett. 1998,
39, 4543-4546. (e) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J.
Am. Chem. Soc. 1998, 120, 4033-4034. (f) Kimura, M.; Fujimatsu, H.;
Ezoe, A.; Shibata, K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew.
Chem, Int. Ed. 1999, 38, 397-400. Allene: (g) Kang, S.; Yoon, S. Chem.
Commun. 2002, 2634-2635. Review: (h) Montgomery, J. Angew. Chem,
Int. Ed. 2004, 43, 3890-3908.
Figure 2. Molecular structure of 4b.
(2) Oxidative cyclization of CdO and CdC with Ti(II): Hewlett, D. F.;
Whitby, R. J. Chem. Commun. 1990, 1684-1686. Kablaoui, N. M.;
Buchwald, S. L. J. Am. Chem. Soc. 1995, 117, 6785-6786. Crowe, W.
E.; Rachita, M. J. J. Am. Chem. Soc. 1995, 117, 6787-6788. Quan, L.
G.; Cha, J. K. Tetrahedron Lett. 2001, 42, 8567-8569. Nickelacycles
derived from oxidative cyclization: Hoberg, H.; Peres, Y.; Kru¨ger, C.;
Tasy, Y.-H. Angew. Chem, Int. Ed. Engl. 1987, 26, 771-773. Walther,
D.; Dinjus, E.; Sieler, J.; Andersen, L.; Lindqvist, O. J. Organomet. Chem.
1984, 276, 99-107. Walther, D.; Bra¨unlich, G.; Kempe, R.; Sieler, J. J.
Organomet. Chem. 1992, 436, 109-119. Amarasinghe, K. K. D.;
Chowdhury, S. K.; Heeg, M. J.; Montgomery, J. Organometallics 2001,
20, 370-372.
(3) It was suggested that the coordination of a Lewis acidic reagent to a
carbonyl group on nickel enhances the reactivity of the carbonyl
compound.1f
Figure 3. Molecular structure of 5b.
(4) Selected spectral data for 1a. 1H NMR (C6D6): δ 0.60 (m, 1H), 0.83 (m,
1H), 0.95-2.28 (m, 36H, including 1H of -CHdCH2 at δ 2.00), 2.31 (t,
J ) 8.0 Hz, 1H, -CHdCH2), 2.46 (m, 1H, -CH2CHdCH2), 3.01 (m,
1H, -CHdCH2), 5.54 (m, 1H, -CHO). 31P NMR (C6D6): δ 38.4 (s).
Scheme 3. Addition of Me3SiOTf to η2-RCHO
13C NMR (C6D6): δ 45.8 (d, JCP ) 3.8 Hz, -CHdCH2), 68.2 (d, JCP
)
8.4 Hz, -CHdCH2). 102.9 (d, JCP ) 7.6 Hz, -CHO). Anal. Calcd for
C24H43O1P1Ni1: C, 65.92; H, 9.91. Found: C, 64.99; H, 9.64.
(5) Selected spectral data for 2b-anti: 1H NMR (C6D6): δ -0.51 (m, 1H of
-CH2Ni), 0.90-2.25 (m, 34H, including 1H of -CH2Ni at δ 1.45), 2.45
(m, 1H, -CHCH2C6H4-), 2.98 (dd, J ) 15.1 Hz, J ) 5.7 Hz, 1H,
-CH2C6H4-), 3.01 (m, 1H, -CH2C6H4), 4.55 (m, 1H, -NiCH2CHCHO-),
7.22 (d, J ) 7.6 Hz, 1H), 7.34 (t, J ) 7.0 Hz, 1H), 7.81 (t, J ) 7.3 Hz,
1H), 10.02 (d, J ) 7.3 Hz, 1H). 31P NMR (C6D6): δ 28.6 (s). Anal. Calcd
for C28H43Ni1O1P1(C6H6)0.5 C, 71.01; H, 8.84. Found: C, 70.60; H, 8.91.
(6) Similar carbonylation of titanium complexes has been reported: (a) Crowe,
W. E.; Vu, A. T. J. Am. Chem. Soc. 1996, 118, 1557-1558. (b) Kablaoui,
N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818-
5819.
10
Treatment of (η2-PhCHO)Ni(PCy3)2 with Me3SiOTf gave
(η1:η1-Me3SiOCH(Ph))Ni(PCy3)OTf (5a) quantitatively, concomi-
tant with dissociation of PCy3 (Scheme 3).11 5a was also prepared
by the treatment of PhCHO with Me3SiOTf in the presence of
Ni(cod)2 and PCy3. Similarly to the latter method, (η1:η1-Me3-
SiOCH(tBu))Ni(PCy3)OTf (5b) was prepared, the structure of which
was confirmed by X-ray diffraction analysis (Figure 3). The
complex shows a square planar structure with the siloxymethyl
ligand generated by the electrophilic addition of Me3SiOTf to
carbonyl oxygen. An intermolecular reaction of 5a with styrene or
trimethylvinylsilane was attempted, but in vain. Presumably, the
formation of an intermediate for the cyclization having neighboring
η2-olefin and siloxymethyl ligands from 5 may have been unfavor-
able. On the other hand, the cyclization from 1 to 4 may involve
the preorganized CdC and CdO double bonds on the nickel(0)
center, which are ready to undergo the Me3SiOTf-triggered multi-
bond formation process.
(7) Selected spectral data for 1c′. 1H NMR (C6D6): δ 2.87 (brd, J ) 5.4 Hz,
2H), 3.88 (brd, J ) 14.5 Hz, 1H, -CHdCH2), 4.04 (brd, J ) 10.0 Hz,
1H, -CHdCH2), 5.11 (brm, 1H, -CHdCH2), 6.60 (brs, 1H, -CHO).
31P NMR (C6D6): δ 29.0 (brs). The olefinic proton chemical shifts in 1c′
are apparently different from those of 1c: 1H NMR (C6D6) δ 2.38 (brd,
J ) 13.0 Hz, 1H, -CHdCH2), 2.59 (brd, J ) 8.1 Hz, 1H, -CHdCH2),
2.90 (brs, 2H), 4.11 (brm, 1H, -CHdCH2), 6.80-7.10 (br, 11H, including
-CHO).
(8) Ogoshi, S.; Yoshida, T.; Nishida, T.; Morita, M.; Kurosawa, H. J. Am.
Chem. Soc. 2001, 123, 1944-1950. Ogoshi, S.; Tomiyasu, S.; Morita,
M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 11598-11599.
(9) Selected spectral data for 4b. 1H NMR (C6D6): 0.03 (dt, J ) 10.3 Hz,
1.5 Hz, 1H, -CH2Ni), 0.57 (s, 9H, -OSiMe3), 0.86 (t, J ) 8.9 Hz, 1H,
-CH2Ni), 1.30-1.92 (m, 34H, including 1H of -NiCH2CH- at δ 1.48),
2.67 (d, J ) 15.6 Hz, 1H, -CH2C6H4-), 2.87 (dd, J ) 15.6 Hz, 7.3 Hz,
1H, -CH2C6H4-), 4.83 (d, J ) 6.4 Hz, 1H, -CHOSiMe3), 7.20 (d, J )
7.3 Hz, 1H), 7.34 (t, J ) 7.3 Hz, 1H), 7.53 (t, J ) 7.3 Hz, 1H), 8.12 (d,
J ) 7.6 Hz, 1H). 31P NMR (C6D6): δ 32.9 (s). Anal. Calcd for C32H52F3-
Ni1O4S1Si1P1: C, 54.32; H, 7.41. Found: C, 54.08; H, 7.38.
In conclusion, we have demonstrated the formation of nickela-
cycle by the direct oxidative cyclization of (η2:η2-CH2dCHCH2-
CH2CH2CHO)Ni(PR3) or (η2:η2-o-CH2dCHCH2-C6H4CHO)-
Ni(PR3) and the drastic acceleration of cyclization by the addition
of Me3SiOTf. (η2-PhCHO)Ni(PCy3)2 also reacted with Me3SiOTf
(10) Walther, D. J. Organomet. Chem. 1980. 190, 393-401.
(11) Selected spectral data for 5a. 1H NMR (C6D6): δ 0.31 (s, 9H, -OSiMe3),
0.95-1.95 (m, 33H), 4.34 (d, JHP ) 3.5 Hz, 1H, -CHOSiMe3), 7.00 (m,
3H), 7.47 (d, JHP ) 7.3 Hz, 2H). 31P NMR (C6D6): δ 42.0 (s).
JA0460716
9
J. AM. CHEM. SOC. VOL. 126, NO. 38, 2004 11803