Scheme 1. Synthetic Plan of the
Bicyclo[7.3.0]dodecatrienediyne Structure
Figure 1. Structure of the C-1027 chromophore and its Masam-
une-Bergman rearrangement.
common bicyclo[7.3.0]dodecadiyne core but differ in the
degree of oxidation and unsaturation. Chromophore 1 has
the most unsaturated structure among these enediyne natural
products: only two sp3 carbons are present within the
dodecacycle while the other 10 carbons are conjugated. Here,
we report a general and efficient route to the trienediyne
structure, which is to date the only synthetic construct that
bears the fused ring system of the cyclopentadiene and
enediyne structures.12-16
membered ring cyclization (Scheme 1).17 The most formi-
dable problem for the total synthesis of 1 from diyne 4 is
apparently the formation of the reactive bicyclo[7.3.0]-
dodecatrienediyne. We therefore undertook, as a model study,
the synthesis of trienediyne 7 from diyne 5, which possesses
the same structure as 4 except for the â-tyrosine moiety.
Because of the general instability of the strained nine-
membered diynes,18 a synthetic scheme en route to 5 should
constitute a series of mild reaction conditions. More-
over, introduction of the C4-C5 olefin should be at the last
stage in order to avoid the consumption of synthetic
intermediates via Bergman rearrangement. Hence, the cy-
clopentadiene structure was planned to be constructed prior
to the enediyne through dehydration of the C11 alcohol (5
f 6). The C4-C5 olefin was then to be directly installed
In prior work, we efficiently constructed the C-1027
chromophore framework 4 through atropselective macrolac-
tonization and subsequent LiN(TMS)2/CeCl3-promoted nine-
(11) Neocarzinostatin; Maeda, H., Edo, K., Ishida, N., Eds.; Springer:
Tokyo, 1997.
(12) For synthetic studies of the C-1027 chromophore from this labora-
tory, see: (a) Iida, K.; Ishii, T.; Hirama, M.; Otani, T.; Minami, Y.; Yoshida,
K. Tetrahedron Lett. 1993, 34, 4079-4082. (b) Iida, K.; Hirama, M. J.
Am. Chem. Soc. 1995, 117, 8875-8876. (c) Sato, I.; Toyama, K.; Kikuchi,
T.; Hirama, M. Synlett 1998, 1308-1310. (d) Sato, I.; Akahori, Y.; Sasaki,
T.; Kikuchi, T.; Hirama, M. Chem Lett. 1999, 867-868. (e) Sato, I.; Kikuchi,
T.; Hirama, M. Chem. Lett. 1999, 511-512. (f) Sasaki, T.; Inoue, M.;
Hirama, M. Tetrahedron Lett. 2001, 42, 5299-5303. (g) Inoue, M.; Kikuchi,
T.; Hirama, M. Tetrahedron Lett. 2004, 45, 6439-6442.
(13) Total syntheses of natural products with bicyclo[7.3.0]dodecadiyne
strucures have been reported. N-1999-A2: (a) Kobayashi, S.; Ashizawa,
S.; Takahashi, Y.; Sugiura, Y.; Nagaoka, M.; Lear, M. J.; Hirama, M. J.
Am. Chem. Soc. 2001, 123, 11294-11295. Neocarzinostatin chro-
mophore: (b) Myers, A. G.; Liang, J.; Hammond, M.; Harrington, P. M.;
Wu, Y.; Kuo, E, Y. J. Am. Chem. Soc. 1998, 120, 5319-5320. (c) Myers,
A. G.; Glatthar, R.; Hammond, M.; Harrington, P. M.; Kuo, E. Y.; Liang,
J.; Schaus, S. E.; Wu, Y.; Xiang, J.-N. J. Am. Chem. Soc. 2002, 124, 5380-
5401.
(14) For recent synthetic studies of the other enediyne natural products
from this laboratory, see the following. Neocarzinostatin chromophore: (a)
Toyama, K.; Iguchi, S.; Sakazaki, H.; Oishi, T.; Hirama, M. Bull. Chem.
Soc. Jpn. 2001, 74, 997-1008. Kedarcidin: (b) Yoshimura, F.; Kawata,
S.; Hirama, M. Tetrahedron Lett. 1999, 40, 8281-8285. (c) Lear, M. J.;
Yoshimura, F.; Hirama, M. Angew. Chem., Int. Ed. 2001, 40, 946-949.
(d) Ohashi, I.; Lear, M. J.; Yoshimura, F.; Hirama, M. Org. Lett. 2004, 6,
719-722. Maduropeptin: (e) Kato, N.; Shimamura, S.; Khan, S.; Takeda,
F.; Kikai, Y.; Hirama, M. Tetrahedron 2004, 60, 3161-3172. (f) Kato, N.;
Shimamura, S.; Kikai, Y.; Hirama, M. Synlett In press, and references
therein.
(15) For other syntheses of bicyclo[7.3.0]dodecadiyne structures, see:
(a) Wender, P. A.; Harmata, M.; Jeffery, D.; Mukai, C.; Suffert, J.
Tetrahedron Lett. 1988, 29, 909-912. (b) Wender, P. A.; McKinney, J.
A.; Mukai, C. J. Am. Chem. Soc. 1990, 112, 5369-5370. (c) Myers, A. G.;
Harrington, P. M.; Kuo, E. Y. J. Am. Chem. Soc. 1991, 113, 694-695. (d)
Doi, T.; Takahashi, T. J. Org. Chem. 1991, 56, 3465-3467. (e) Magnus,
P.; Carter, R.; Davies, M.; Elliott, J.; Pitterna, T. Tetrahedron 1996, 52,
6283-6306. (f) Tanaka, H.; Yamada, H.; Matsuda, A.; Takahashi, T. Synlett
1997, 381-383. (g) Caddick, S.; Delisser, V. M.; Doyle, V. E.; Khan, S.;
Avent, A. G.; Vile, S. Tetrahedron 1999, 55, 2737-2754. (h) Myers, A.
G.; Hogan, P. C.; Hurd, A. R.; Goldberg, S. D. Angew. Chem., Int. Ed.
2002, 41, 1062-1066 and references therein.
(16) For reviews on the syntheses of enediyne compounds, see: (a)
Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387-
1416. (b) Danishefsky, S. J.; Shair, M. D. J. Org. Chem. 1996, 61, 16-44.
(c) Bru¨ckner, R.; Suffert, J. Synlett 1999, 657-679.
(17) Inoue, M.; Sasaki, T.; Hatano, S.; Hirama, M. Angew. Chem., Int.
Ed. In press.
(18) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1994, 116, 10310-10311.
3834
Org. Lett., Vol. 6, No. 21, 2004