A R T I C L E S
Ferna´ndez et al.
Scheme 1a
building blocks for the synthesis of kainoids,11 natural products
analogues,8c,12 and functionalized γ-aminophosphinic acids.10,13
Recently, Clayden et al. demonstrated the feasibility of using
two different groups for aromatic ring activation and anion
stabilization in the dearomatization of oxazolylnaphthalenes
bearing an ether appendage.6,14 Upon metalation in the R
position with respect to the oxygen atom, the oxazoline Michael
acceptor15 drives an anionic cyclization reaction, yielding
dearomatized oxygen heterocycles.16
The optimization of the dearomatization-electrophilic trap-
ping reactions of N-alkyl-N-benzyl(diphenyl)phosphinamides
revealed some mechanistic hints that can be summarized as
follows:17 (1) coordinating solvents such as hexamethylphos-
phoramide (HMPA) or 1,3-dimethyl-3,4,5,6-tetrahydropyrimi-
din-2(1H)-one (DMPU) notably accelerate the reaction, the best
results being obtained with the latter; (2) significant amounts
of products derived from ortho and benzylic metalation were
formed for short metalation (t1) and electrophilic quenching (t2)
times; and (3) the anionic cyclization step is reversible, which
allows one to obtain products of either kinetic or thermodynamic
control. The general picture emerging from these experimental
results is shown in Scheme 1 for the particular case of N-benzyl-
N-methyl(diphenyl)phosphinamide (1). The products isolated (2,
3, and 4) are consistent with the participation of three possible
anions: the ortho-lithiated species I, the benzylic derivative II,
and the dearomatized intermediate III. This situation is similar
to that reported for the anionic cyclization of N-benzylaryl-
amides.18 By analogy with the mechanism proposed for the
dearomatization of these compounds, we assumed that the ortho
anion may translocate to the benzylic one. It must be pointed
out that Clayden et al. suggested that the cyclization step of
a (1) s-BuLi (2.5 equiv), DMPU (none or 6 equiv), THF, -90 °C, t1. (2)
E+, -90 °C, t2. (3) H2O.
lithiated arylamides is better described as an electrocyclic ring
closure rather than a standard Michael addition.19
The reactions that produce anions I and II upon treatment of
phosphinamide 1 with s-BuLi are examples of ortho- and
benzylic-directed metalation, respectively. Directed lithiations
are a topic of considerable debate.20 The selective deprotonation
of an ortho or benzylic position assisted by an electron-
withdrawing group bearing electron lone pairs may be explained
through the complex-induced proximity effect (CIPE) model.21
This mechanism considers the lithiation as a two-step process.
First, the coordination of the lithium cation of the base with
one Lewis basic heteroatom of the substrate results in the
formation of a complex. This complex brings the carbanionic
center of the base close to the acidic proton, thus favoring the
transfer of the proton in the second step. Ortho-directed
deprotonations have been interpreted by an alternative mech-
anism involving a one-step reaction. In this model, the meta-
lation is described as a kinetically controlled transformation for
which the term “kinetically enhanced metalation” has been
coined.22 A detailed analysis of the lithiation of phosphinamides
in THF solution in terms of these models has not been previously
performed. In this article we describe the isotopic-labeling and
NMR study of the mechanism of the reaction of N-alkyl-N-
benzyl(diphenyl)phosphinamides with s-BuLi leading to dearo-
matized products. Deuteration reactions afforded the distribution
of anionic species present in the reaction medium, and the use
of deuterated phosphinamides showed the feasibility of anion
translocation. NMR monitoring of the reaction made possible
identification of all the intervening lithiated intermediates and
(7) (a) Ahmed, A.; Clayden, J.; Yasin, S. A. Chem. Commun. 1998, 231. (b)
Ahmed, A.; Clayden, J.; Rowley, M. Chem. Commun. 1998, 297. (c)
Clayden, J.; Menet, C. J.; Mansfield, D. J. Org. Lett. 2000, 2, 4229. (d)
Clayden, J.; Tchabanenko, K.; Yasin, S. A.; Turnbull, M. D. Synlett 2001,
302. (e) Clayden, J.; Menet, C. J.; Mansfield, D. J. Chem. Commun. 2002,
38. (f) Clayden, J.; Knowles, F. E.; Menet, C. J. Synlett 2003, 1701. (g)
Clayden, J.; Knowles, F. E.; Menet, C. J. J. Am. Chem. Soc. 2003, 125,
9278.
(8) (a) Crandall, J. K.; Ayers, T. A. J. Org. Chem. 1992, 57, 2993. (b) Padwa,
A.; Filipkowski, M. A.; Kline, D. N.; Murphree, S.; Yeske, P. E. J. Org.
Chem. 1993, 58, 2061. (c) Clayden, J.; Kenworthy, M. N.; Heliwell, M.
Org. Lett. 2003, 5, 831.
(9) (a) Breternitz, H. J.; Schaumann, E.; Adiwidjaja, G. Tetrahedron Lett. 1991,
32, 1299. (b) Aggarwal, V. K.; Ferrara, M. Org. Lett. 2000, 2, 4107. (c)
Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002,
67, 2335. (d) Luisi, R.; Capriati, V.; Florio, S.; Ranaldo, R. Tetrahedron
Lett. 2003, 44, 2677.
(10) (a) Ferna´ndez, I.; Lo´pez-Ortiz, F.; Tejerina, B.; Garc´ıa-Granda, S. Org.
Lett. 2001, 3, 1339. (b) Ruiz-Go´mez, G.; Lo´pez Ortiz, F. Synlett 2002,
781.
(11) (a) Clayden, J.; Tchabanenko, K. Chem. Commun. 2000, 317. (b) Clayden,
J.; Menet, C. J.; Mansfield, D. J. Chem. Commun. 2002, 38. (c) Clayden,
J.; Menet, C. J.; Tchabanenko, K. Tetrahedron 2002, 58, 4727.
(12) (a) Ahmed, A.; Bragg, R. A.; Clayden, J.; Tchabanenko, K. Tetrahedron
Lett. 2001, 42, 3407. (b) Bragg, R. A.; Clayden, J.; Blandon, M.; Ichihara,
O. Tetrahedron Lett. 2001, 42, 3411.
(13) Ferna´ndez, I.; Lo´pez-Ortiz, F.; Mene´ndez-Vela´zquez, A.; Garc´ıa-Granda,
S. J. Org. Chem. 2002, 67, 3852.
(14) This is the general strategy used in anionic cyclization reactions that do
not involve the nucleophilic attack at an aromatic ring. For reviews, see:
(a) Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. 2002, 646, 59. See
also: (b) Deng, K.; Bensari, A.; Cohen, T. J. Am. Chem. Soc. 2002, 124,
12106. (c) Bailey, W. F.; Daskapan, T.; Rampalli, S. J. Org. Chem. 2003,
68, 1334.
(19) Clayden, J.; Purewal, S.; Helliwell, M.; Mantell, S. J. Angew. Chem., Int.
Ed. 2002, 41, 1049.
(20) For reviews, see:(a) Klumpp, G. W. Recl. TraV. Chim. Pays-Bas 1986,
105, 1. (b) Snieckus, V. Chem. ReV. 1990, 90, 879. (c) Green, L.; Chauder,
B.; Snieckus, V. J. Heterocycl. Chem. 1999, 36, 1453. (d) Mugesh, G.;
Singh, H. B. Acc. Chem. Res. 2002, 35, 226. See also: (e) Chadwick, S.
T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B. J. Am. Chem. Soc.
2000, 122, 8640. (f) Saa´, J. M. HelV. Chim. Acta 2002, 85, 814.
(21) (a) Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356. (b) Beak, P.;
Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem.
Res. 1996, 29, 552.
(15) Oxazolines are one of the best activating groups for the conjugate addition
to naphthalene rings. (a) Reuman, M.; Meyers, A. I. Tetrahedron 1985,
41, 837. (b) Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297. (c)
Meyers, A. I. J. Heterocycl. Chem. 1998, 35, 991.
(16) Clayden, J.; Kenworthy, M. N. Org. Lett. 2002, 4, 787.
(17) Ferna´ndez, I.; Force´n-Acebal, A.; Lo´pez-Ortiz, F.; Garc´ıa-Granda, S. J.
Org. Chem. 2003, 68, 4472.
(18) (a) Ahmed, A.; Clayden, J.; Rowley, M. Tetrahedron Lett. 1998, 39, 6103.
(b) Bragg, R. A.; Clayden, J. Tetrahedron Lett. 1999, 40, 8327.
(22) (a) Van Eikema Hommes, N. J. R.; Schleyer, P. V. R. Angew. Chem., Int.
Ed. Engl. 1992, 31, 755. (b) Van Eikema Hommes, N. J. R.; Schleyer, P.
V. R. Tetrahedron 1994, 50, 5903. (c) Kremer, T.; Junge, M.; Schleyer, P.
V. R. Organometallics 1996, 15, 3345.
9
12552 J. AM. CHEM. SOC. VOL. 126, NO. 39, 2004