Journal of the American Chemical Society
COMMUNICATION
secondary amines such as piperidine and morpholine (Table 2,
entries 26 and 25, respectively) offered better yields than the
simple secondary amines (Table 2, entries 24 and 27). Interest-
ingly, when the oxidative amidation reaction was applied to an
optically active amino acid and its derivates, the reaction pro-
ceeded smoothly with yields of 73% and 69% (Table 2, entries 28
and 30). No racemization occurred in this reaction, and a free
amino acid could be used directly.
Currently available data do not allow one to explain clearly the
several remarkable effects of the bimetallic Au/Co complex for
the selective formation of amide products and the difference in
activities for PICB-Au and PICB-Au/Co, but there are several
possibilities. The cobalt center may stabilize the carbinolamine
form and decrease the activity of gold nanoparticles in the first
oxidation step. Although the mechanistic issues are yet to be
resolved, the results of this work have demonstrated that,
depending on the catalyst system, the amide bond formation
from alcohols and amines when using molecular oxygen as a
terminal oxidant can be conducted with high selectivity and in
high yields when using heterogeneous catalysts. These catalysts
can be reused several times. The method has been generalized
and a wide variety of substrates has been tested (benzylic, allylic,
and aliphatic alcohols; primary and secondary amines; aniline;
aqueous ammonia; and amino acids), and these have shown good
activity in this coupling. Our results indicate that this is one of the
greenest and most general methods for amide bond formation
from alcohols and amines.
(7) (a) Nordstrøm, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008,
130, 17672–17673. (b) Ghosh, S. C.; Muthaiah, S.; Zhang, Y.; Xu, X. Y.;
Hong, S. H. Adv. Synth. Catal. 2009, 351, 2643–2649. (c) Watson, A. J. A.;
Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2009, 11, 2667–2670. (d) Zweifel,
T.; Naubron, J.-V.; Gr€utzmacher, H. Angew. Chem., Int. Ed. 2009,
48, 559–563. (e) Muthaiah, S.; Ghosh, S. C.; Jee, J. E.; Chen, C.; Zhang, J.;
Hong, S. H. J. Org. Chem. 2010, 75, 3002–3006. (f) Zhang, Y.; Chen, C.;
Ghosh, S. C.; Li, Y.; Hong, S. H. Organometallics 2010, 29, 1374–1378. (g)
Shimizu, K.; Ohshima, K.; Satsuma, A. Chem.—Eur. J. 2009, 15, 9977–9980.
(8) Yoo, W.-J.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 13064–13065.
(9) Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.; Kantam,
M. L. Eur. J. Org. Chem. 2008, 3619–3622.
(10) Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res.
2005, 38, 851–869.
(11) (a) He, L.; Lou, X.-B.; Ni, J.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan,
K.-N. Chem.—Eur. J. 2010, 16, 13965–13969. (b) Ishida, T.; Kawakita,
N.; Akita, T.; Haruta, M. Gold Bull. 2009, 42, 267–274.
(12) Abad, A.; Concepcion, P.; Corma, A.; Garcia, H. Angew. Chem.,
Int. Ed. 2005, 44, 4066–4069.
(13) (a) Prati, L.; Rossi, M. J. Catal. 1998, 176, 552–560.
(b) Bianchi, C.; Porta, F.; Prati, L.; Rossi, M. Top. Catal. 2000, 13,
231–236. (c) Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.;
Hutchings, G. J. Chem. Commun. 2002, 696–697. (d) Tsunoyama, H.;
Sakurai, H.; Negishi, Y.; Tsukuda, T. J. Am. Chem. Soc. 2005,
127, 9374–9375. (e) Miyamura, H.; Matsubara, R.; Miyazaki, Y.;
Kobayashi, S. Angew. Chem., Int. Ed. 2007, 46, 4151–4154.
(14) Kegnaes, S.; Mielby, J.; Mentzel, U. V.; Christensen, C. H.;
Riisager, A. Green Chem. 2010, 12, 1437–1441.
(15) (a) Aschwanden, L.; Mallat, T.; Krumeich, F.; Baiker, A. J. Mol.
Catal. A: Chem. 2009, 309, 57–62. (b) Grirrane, A.; Corma, A.; Garcia,
H. J. Catal. 2009, 264, 138–144. (c) Miyamura, H.; Morita, M.; Inasaki,
T.; Kobayashi, S. Bull. Chem. Soc. Jpn. 2011, 84, 588–599. (d) So, M.-H.;
Liu, Y.; Ho, C.-M.; Che, C.-M. Chem. Asian J. 2009, 4, 1551–1561.
(e) Zhu, B.; Angelici, R. J. Chem. Commun. 2007, 2157–2159.
(16) (a) Klitgaard, S. K.; Egeblad, K.; Mentzel, U. V.; Popov, A. G.;
Jensen, T.; Taarning, E.; Nielsen, I. S.; Christensen, C. H. Green Chem. 2008,
10, 419–423. (b) Ishida, T.; Haruta, M. ChemSusChem 2009, 2, 538–541. (c)
Xu, B.; Zhou, L.; Madix, R. J.; Friend, C. M. Angew. Chem., Int. Ed. 2010,
49, 394–398. (d) Zhou, L.; Freyschlag, C. G.; Xu, B. J.; Friend, C. M.; Madix,
R. J. Chem. Commun. 2010, 46, 704–706. (e) Preedasuriyachai, P.; Kitahara,
H.; Chavasiri, W.; Sakurai, H. Chem. Lett. 2010, 39, 1174–1176.
(17) (a) Miyamura, H.; Yasukawa, T.; Kobayashi, S. Green Chem.
2010, 12, 776–778. (b) Lucchesi, C.; Inasaki, T.; Miyamura, H.;
Matsubara, R.; Kobayashi, S. Adv. Synth. Catal. 2008, 350, 1996–2000.
(18) (a) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu,
B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight,
D. W.; Hutchings, G. J. Science 2006, 311, 362–365. (b) Tsukuda, T.;
Tsunoyama, H.; Sakurai, H. Chem. Asian J. 2011, 6, 736–748. (c) Della Pina,
C.; Falletta, E.; Prati, L.; Rossi, M. Chem. Soc. Rev. 2008, 37, 2077–2095.
(d) Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743–754.
(19) (a) Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings,
G. J. Chem. Commun. 2002, 2058–2059. (b) Kaizuka, K.; Miyamura, H.;
Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 15096–15098. (c) Yoo, W.-J.;
Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2011, 133, 3095–3103.
(20) The effect of carbon black (CB) on catalytic activity was
discussed in previous reports (refs 17b and 19c): it prevents aggregation
of clusters and enlarges surface area.
’ ASSOCIATED CONTENT
S
Supporting Information. Reaction procedure and spec-
b
tra. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was partially supported by a Grant-in-Aid for
Science Research from the Japan Society for the Promotion of
Science (JSPS), Global COE Program, The University of Tokyo,
MEXT, Japan, and NEDO. We also thank Mr. Noriaki Kuramitsu
(The University of Tokyo) for STEM and EDS analysis.
’ REFERENCES
(1) (a) Larock, R. C. Comprehensive Organic Transformations: A
Guide to Functional Group Preparations, 2nd ed.; Wiley-VCH: New York,
1999; (b) Allen, C. L.; Williams, J. M. J. Chem. Soc. Rev. 2011,
40, 3405–3415.
(21) See Supporting Information.
(2) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606–631.
(3) Smith, M. B. Compendium of Organic Synthetic Methods; Wiley:
New York, 2001; Vol. 9.
(22) Examination by Inductively Coupled Plasma (ICP) analysis of
the resulting filtrate of the reaction mixture revealed no leaching of either
cobalt or gold under the two conditions.
(4) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301–312.
(5) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey,
G. R.; Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.;
Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007,
9, 411–420.
(23) Because of the instability of acrolein, 2 equiv of allylic alcohol
was used.
(6) (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
317, 790–792. (b) Naota, T.; Murahashi, S. I. Synlett 1991, 693–694.
18553
dx.doi.org/10.1021/ja2080086 |J. Am. Chem. Soc. 2011, 133, 18550–18553