Mesitylnickel Complexes of α-Diimines
FULL PAPER
[11]
[12]
[13]
[14]
[15]
H, H3C3,8), 2.13 (s, 6 H, p-CH3) ppm. 13C NMR (CD2Cl2): δ ϭ
157.2, 150.5, 142.6, 127.3, 122.7 (all tmphen); 144.9 (Mes-1), 144.1
(Mes-2), 130.9 (Mes-4), 125.3 (Mes-3), 27.3 (o-CH3), 20.8 (p-CH3),
18.1 (H3C4,7), 14.9 (H3C3,8) ppm.
P. T. Matsanuga, J. C. Mavrapoulos, G. L. Hillhouse, Poly-
hedron 1995, 14, 175.
P. T. Matsanuga, C. R. Hess, G. L. Hillhouse, J. Am. Chem.
Soc. 1994, 116, 3665.
P. T. Matsanuga, G. L. Hillhouse, J. Am. Chem. Soc. 1993,
115, 2075.
P. Binger, M. J. Doyle, C. Krüger, Y.-H. Tsay, Z. Naturforsch.,
Teil B 1979, 34, 1289.
T. Yamamoto, A. Yamamoto, S. Ikeda, J. Am. Chem. Soc.
1971, 93, 3350.
3c: Yield 84%, dark violet powder. C28H30N2Ni1 (453.27): calcd. C
74.20, H 6.67, N 6.18; found C 74.35, H 6.65, N 6.22. 1H NMR
3
([D6]acetone): δ ϭ 8.38 (d, JH3,H4 ϭ 8.02 Hz, 2 H, H3,3Ј), 8.12
3
(dd,3JH4,H5 ϭ 6.90 Hz, 2 H, H4,4), 7.54 (d, JH5,H6 ϭ 4.84 Hz, 2
H, H6,6Ј), 7.44 (dd, 2 H, H5,5Ј), 6.37 (s, 4 H, m-H), 2.53 (s, 12 H,
o-CH3), 2.08 (s, 6 H, p-CH3) ppm. 13C NMR ([D6]acetone): δ ϭ
157.4 (bpy-2,2Ј), 149.9 (bpy-6,6Ј), 144.1 (Mes-2), 138.1 (bpy-4,4Ј),
136.6 (Mes-1), 130.9 (Mes-4), 127.6 (bpy-3,3Ј), 126.0 (Mes-3), 122.0
(bpy-5,5Ј), 27.3 (o-CH3), 20.8 (p-CH3) ppm.
[16]
[17]
W. Seidel, Z. Chem. 1985, 25, 411.
G. Wilke, G. Herrmann, Angew. Chem. 1966, 78, 591. G. Wilke,
G. Herrmann, Angew. Chem. Int. Ed. Engl. 1966, 5, 581.
T. R. Miller, I. G. Dance, J. Am. Chem. Soc. 1973, 95, 6970.
A. Arcas, P. Royo, Inorg. Chim. Acta 1978, 31, 97.
R. F. de Souza, L.C. Simon, M.C. Alves, J. Catal. 2003, 214,
165.
[18]
[19]
[20]
3e: Yield 78%, dark green microcrystalline powder. C26H28N4Ni1
(455.25): calcd. C 68.60, H 6.20, N 12.31; found C 68.72, H 6.22,
1
N 12.41. H NMR ([D6]acetone): δ ϭ 9.54 (s, 2 H, H3,3Ј), 8.75 (s,
[21]
T. Yamamoto, M. Abla, Y. Murakami, Bull. Chem. Soc. Jpn.
2002, 75, 1997.
2 H, H5,5Ј), 7.53 (s, 2 H, H6,6Ј), 6.49 (s, 4 H, m-H), 2.45 (s, 12 H,
o-CH3), 2.28 (s, 6 H, p-CH3) ppm.
[22] [22a]
T. Yamamoto, M. Abla, J. Organomet. Chem. 1997, 535,
209. [22b] T. Yamamoto, Synlett 2003, 4, 425. [22c] T. Yamamoto,
S. Wakabayashi, K. Osakada, J. Organomet. Chem. 1992, 428,
223.
Supporting Information: Fourteen tables with comparisons between
calculated and experimental structural data for 2c, 3c, and [(bpy)-
Ni(Me)2]; details of the crystal structure of 3a; 13C NMR spectro-
scopic data of selected complexes and absorption spectroscopic
data are also given. Furthermore, eight figures are provided show-
ing additional EXAFS spectra and the XANES spectra of 2e and
2d and a view of the unit cell of 3a from the crystal structure deter-
mination (see also the footnote on the first page of this article).
[23]
[24]
A. Klein, Z. Anorg. Allg. Chem. 2001, 627, 645.
M. P. Feth, A. Klein, H. Bertagnolli, Eur. J. Inorg. Chem.
2003, 839.
[25] [25a] A. Klein, E. J. L. McInnes, W. Kaim, J. Chem. Soc., Dalton
[25b]
Trans. 2002, 2371.
A. Klein, H.-D. Hausen, W. Kaim, J.
Organomet. Chem. 1992, 440, 207. [25c] A. Klein, M. Niemeyer,
Z. Anorg. Allg. Chem. 2000, 626, 1191.
Slageren, S. Zalis, Eur. J. Inorg. Chem. 2003, 1927.
[25d]
A. Klein, J. van
´
[26] [26a] G. J. Colpas, M.J. Maroney, C. Bagyinka, M. Kumar, W.S.
Willis, S.L. Suib, N. Baidya, P. K. Mascharak, Inorg. Chem.
1991, 30, 920. [26b] M. W. Renner, L. R. Furenlid, K. M. Barki-
gia, J. Fajer, J. Phys. IV France 1997, 7, 661. [26c] N. Kosugi, T.
Acknowledgments
We wish to thank HASYLAB at DESY (Hamburg, Germany), the
SSRL at SLAC (Stanford, USA) and BESSY (Berlin, Germany)
for providing synchrotron radiation. The SSRL is operated by the
U.S. Department of Energy, Office of Basic Energy Science. Minis-
try of Education of the Czech Republic and the COST Action D14
is gratefully acknowledged.
Yokoyama, K. Asakura, H. Kuroda, Chem. Phys. 1984, 91,
[26d]
249.
H. Nishida, T. Yokoyama, H. Kuroda, Chem. Phys.
1986, 104, 449.
[27]
[28]
D. M. Manuta, A. J. Lees, Inorg. Chem. 1983, 22, 3825.
W. Kaim, S. Ernst, S. Kohlmann, Chem. unserer Zeit 1987,
21, 50.
[29] [29a]
´ ˇ
A. Klein, J. van Slageren, S. Zalis, Eur. J. Inorg. Chem.
2003, 1917. [29b] A. Klein, J. van Slageren, S. Zalis, Inorg. Chem.
2002, 41, 5216.
´ ˇ
[1]
[1a] S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000,
[30]
[31]
[1b]
G. C. Tucci, R. H. Holm, J. Am. Chem. Soc. 1995, 117, 6489.
100, 1169.
C. M. Killian, L. K. Johnson, M. Brookhart,
Organometallics 1997, 16, 2005. [1c] S. Mecking, L. K. Johnson,
L. Wang, M. Brookhart, J. Am. Chem. Soc. 1998, 120, 888. [1d]
A. M. LaPointe, M. Brookhart, Organometallics 1998, 17,
1530.
ˇ
M. Turki, C. Daniel, S. Zalis, A. Vlcek, Jr, J. Van Slageren, D.
J. Stufkens, J. Am. Chem. Soc. 2001, 123, 11431.
[32] [32a] P. C. Ford, i n Inorganic and Organometallic Photochemistry
(Ed.: M. S. Wrighton), ACS, Washington, D.C., 1978, vol. 168,
73. [32b] A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsev-
ier, Amsterdam, 1984.
[2]
A. Michalak, T. Ziegler, Organometallics 2001, 20, 1521.
[3] [3a]
S. Mecking, Angew. Chem. 2001, 113, 550; Angew. Chem.
[33]
[3b]
R. J. H. Clark, T. J. Dines, Angew. Chem. 1986, 98, 131. R.
Int. Ed. 2001, 40, 534.
2000, 6, 4623.
A. Held, S. Mecking, Chem. Eur. J.
J. H. Clark, T. J. Dines, Angew. Chem. Int. Ed. Engl. 1986,
[4]
[5]
[6]
[7]
[8]
[9]
25, 131.
G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem.
1999, 111, 448; Angew. Chem. Int. Ed. 1999, 38, 428.
M. Schmid, R. Eberhardt, M. Klinga, M. Leskelä, B. Rieger,
Organometallics 2001, 20, 2321.
J. Heinicke, M. He, A. Dal, H.-F. Klein, O. Hetche, W. Keim,
U. Flörke, H.-J. Haupt, Eur. J. Inorg. Chem. 2000, 3, 431.
C. Wang, S. Friedrich, T. R. Younkin, R. T. Li, R. H. Grubbs,
D. A. Bansleben, M. W. Day, Organometallics 1998, 17, 3149.
M. Schmid, R. Eberhardt, J. Kukral, B. Rieger, Z. Natur-
forsch., Teil B 2002, 57, 1141.
[34] [34a]
J. S. Strukl, J. L. Walter, Spectrochim. Acta 1971, 27, 223.
J. S. Strukl, J. L. Walter, Spectrochim. Acta 1971, 27, 209.
[34b]
[35] [35a]
I. Srnova-Sloufova, B. Vlckova, T. L. Snoeck, D. J. Stuf-
[35b]
kens, P. Matejka, Inorg. Chem. 2000, 39, 3551.
R. Hage, J.
G. Haasnoot, D. J. Stufkens, T. L. Snoeck, J. G. Vos, J. Reedijk,
Inorg. Chem. 1989, 28, 1413. [35c] P. A. Mabrouk, M. S. Wrigh-
ton, Inorg. Chem. 1986, 25, 526. [35d] R. W. Balk, T. L. Snoeck,
D. J. Stufkens, A. Oskam, Inorg. Chem. 1980, 19, 3015.
J. van Slageren, D. J. Stufkens, S. Zalis, A. Klein, J. Chem.
Soc., Dalton Trans. 2002, 218. [36b] J. van Slageren, A. Klein, S.
Zalis, D. J. Stufkens, Coord. Chem. Rev. 2001, 219Ϫ221, 937.
M. W. Wong, Chem. Phys. Lett. 1996, 256, 391.
[36] [36a]
L. Johnson, L. Wang, S. McLain, A. Bennett, K. Dobbs, E.
Hauptman, A. Ionkin, S. Ittel, K. Kunitsky, W. Marshall, E.
McCord, C. Radzewich, A. Rinehart, K.J. Sweetman, Y. Wang,
Z. Yin, M. Brookhart, ACS Symp. Ser. 2003, 857, 131.
[37]
[38] [38a]
C. Fonseca Guerra, J. G. Snijders, G. Te Velde, E. J. Baer-
[10] [10a]
[38b]
J. L. Davis, B. A. Arndtsen, Organometallics 2000, 19,
ends, Theor. Chim. Acc. 1998, 99, 391.
S. J. A. van Gis-
[10b]
4657.
4400.
C. Geyer, S. Schindler, Organometallics 1998, 17,
bergen, J. G. Snijders, E. J. Baerends, Comput. Phys. Commun.
1999, 118, 119.
Eur. J. Inorg. Chem. 2004, 2784Ϫ2796
2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2795