Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
5
Taura, H. Iida, Y. Furusho, T. Mori aDndOIE: 1.0Y.10a3s9h/iCm9aC,CJ0.61A2m6F.
Chem. Soc., 2018, 140, 17027–17039.
Y. Suzuki, T. Nakamura, H. Iida, N. Ousaka and E. Yashima,
J. Am. Chem. Soc., 2016, 138, 4852–4859.
K. Miwa, K. Shimizu, H. Min, Y. Furusho and E. Yashima,
Tetrahedron, 2012, 68, 4470–4478.
For other functional spiroborate-based helicates containing
porphyrin and photoresponsive stilbene units in the middle,
see: (a) S. Yamamoto, H. Iida and E. Yashima, Angew.
Chem., Int. Ed., 2013, 52, 6849–6853; (b) N. Ousaka, S.
Yamamoto, H. Iida, T. Iwata, S. Ito, Y. Hijikata, S. Irle and
E. Yashima, Nat. Commun., 2019, 10, 1457; (c) D. Taura, H.
Min, C. Katan and E. Yashima, New J. Chem., 2015, 39,
3259–3269.
to the development of unique chirality-responsive molecular
springs toward chiral guests, such as chiral organic ammoniums
and π-electron-deficient aromatic molecules; the latter may be
sandwiched between the pyrene units in a diastereoselective
fashion, resulting in fluorescent color changes.17 Research
along this line is now in progress in our laboratory.
This work was supported in part by JSPS KAKENHI
(Grant-in-Aid for Specially Promoted Research, no. 18H05209
(E.Y.) and Grant-in-Aid for Scientific Research (C), no.
18K05059 (D.T.)).
6
7
8
Conflicts of interest
There are no conflicts to declare.
9
For reviews of pyrene-based supramolecular chemical
sensors, see: (a) S. Karuppannan and J.-C. Chambron,
Chem.–Asian J., 2011, 6, 964–984; (b) E. Manandhar and K.
J. Wallace, Inorg. Chim. Acta, 2012, 381, 15–43.
Notes and references
1
For reviews of artificial molecular systems that undergo
musclelike elastic motions, see: (a) D. W. Urry, Angew.
Chem., Int. Ed. in Engl., 1993, 32, 819–841; (b) J. P. Collin,
C. Dietrich-Buchecker, P. Gaviña, M. C. Jimenez-Molero and
J.-P. Sauvage, Acc. Chem. Res., 2001, 34, 477–487; (c) K.
Kinbara and T. Aida, Chem. Rev., 2005, 105, 1377–1400; (d)
C. J. Bruns and J. F. Stoddart, Acc. Chem. Res., 2014, 47,
2186–2199; (e) F. Niess, V. Duplan and J.-P. Sauvage, Chem.
Lett., 2014, 43, 964–974; (f) S. Erbas-Cakmak, D. A. Leigh,
C. T. McTernan and A. L. Nussbaumer, Chem. Rev., 2015,
115, 10081–10206; (g) M. Barboiu, A.-M. Stadler and J.-M.
Lehn, Angew., Chem., Int. Ed., 2016, 55, 4130–4154.
10 For reviews and examples of structural analyses for synthetic
and biological helical polymers, see: (a) F. M. Winnik, Chem.
Rev., 1993, 93, 587–614; (b) H. Zhao, F. Sanda and T.
Masuda, Macromolecules, 2004, 37, 8893–8896; (c) H. Z.
Lin, K. Morino and E. Yashima, Chirality, 2008, 20, 386–
392; (d) G. Bains, A. B. Patel and V. Narayanaswami,
Molecules, 2011, 16, 7909–7935; (e) Y. Nagata, T.
Nishikawa and M. Suginome, Chem. Commun., 2012, 48,
11193–11195.
11 A similar meso-helicate (meso-DH1BB2–·(Na+)2) has recently
been found to form as a precipitate during the reaction of the
corresponding tetraphenol strand with NaBH4.5
12 Acetonitrile was used as the solvent for the 1H NMR,
2
For examples of stimuli-responsive springlike motions with
artificial helical systems, see: (a) O.-S. Jung, Y. J. Kim, Y.-A.
Lee, J. K. Park and H. K. Chae, J. Am. Chem. Soc., 2000,
122, 9921–9925; (b) M. Barboiu, G. Vaughan, N. Kyritsakas
and J. M. Lehn, Chem.–Eur. J., 2003, 9, 763–769; (c) K.
2–
absorption and fluorescent measurements of meso-DH1BB
·(Na+)2 because the meso-to-racemo isomerization readily
took place with the increasing amount of CH2Cl2 in
acetonitrile (Fig. S1a, ESI†).
2–
Maeda, H. Mochizuki, M. Watanabe and E. Yashima, J. Am. 13 The binding constant (Ka) of the extended rac-DH3BB
Chem. Soc., 2006, 128, 7639–7650; (d) E. Berni, B.
Kauffmann, C. Y. Bao, J. Lefeuvre, D. M. Bassani and I.
Huc, Chem.–Eur. J., 2007, 13, 8463–8469; (e) H.-J. Kim, E.
Lee, H.-s. Park and M. Lee, J. Am. Chem. Soc., 2007, 129,
10994–10995; (f) V. Percec, J. G. Rudick, M. Peterca and P.
A. Heiney, J. Am. Chem. Soc., 2008, 130, 7503–7508; (g) R.
Kakuchi, S. Nagata, R. Sakai, I. Otsuka, H. Nakade, T. Satoh
and T. Kakuchi, Chem.–Eur. J., 2008, 14, 10259–10266; (h)
T. Hashimoto, T. Nishimura, J. M. Lim, D. Kim and H.
Maeda, Chem.–Eur. J., 2010, 16, 11653–11661; (i) E. Ohta,
H. Sato, S. Ando, A. Kosaka, T. Fukushima, D. Hashizume,
M. Yamasaki, K. Hasegawa, A. Muraoka, H. Ushiyama, K.
Yamashita and T. Aida, Nat. Chem., 2011, 3, 68–73; (j) Y.
Ferrand, Q. Gan, B. Kauffmann, H. Jiang and I. Huc, Angew.
Chem., Int. Ed., 2011, 50, 7572–7575; (k) S. Leiras, F. Freire,
J. M. Seco, E. Quiñoá and R. Riguera, Chem. Sci., 2013, 4,
2735–2743; (l) R. Motoshige, Y. Mawatari, A. Motoshige, Y.
Yoshida, T. Sasaki, H. Yoshimizu, T. Suzuki, Y. Tsujita and
M. Tabata, J. Polym. Chem., Part A: Polym. Chem., 2014, 52,
752–759; (m) S. Iamsaard, S. J. Aßhoff, B. Matt, T. Kudernac,
J. J. Cornelissen, S. P. Fletcher and N. Katsonis Nat. Chem.
2014, 6, 229–235; (n) S. Wang, X. Y. Feng, J. Zhang, P. Yu,
Z. X. Guo, Z. B. Li and X. H. Wan, Macromolecules, 2017,
50, 3489–3499; (o) D. A. Siriwardane, O. Kulikov, B. L.
Batchelor, Z. Liu, J. M. Cue, S. O. Nielsen and B. M. Novak,
Macromolecules, 2018, 51, 3722–3730; (p) F. C. Parks, Y.
Liu, S. Debnath, S. R. Stutsman, K. Raghavachari and A. H.
Flood, J. Am. Chem. Soc., 2018, 140, 17711–17723.
·(Na+[2.2.1])2 to a Na+ ion estimated in CD3CN by 1H NMR
titration (3.4 × 103 M-1) (Fig. S11, ESI†) was three orders of
magnitude lower than that of the extended rac-DH1BB2– (2.68
× 106 M-1),4 probably because of the bulky pyrene units at
both ends, while the Ka value increased to 3.3 × 106 M-1 in
CH2Cl2/CH3CN (6/1, v/v) (Fig. S12, ESI†) which was
estimated by fluorescence titrations. In addition, rac-
DH1BNaB–·Na+ almost retained its contracted form in
CH2Cl2/CH3CN (6/1, v/v) at the concentration range between
10-3 and 10-6 M during dilution absorption and fluorescence
experiments (Fig. S13a,b, ESI†), indicating the Ka value was
as high as ca. 106 M-1 in CH2Cl2/CH3CN (6/1, v/v).
Therefore, a CH2Cl2/CH3CN (6/1, v/v) mixture was employed
as the solvent throughout the course of the ion-triggered
extension and contraction experiments.
14 The Ka value of the extended rac-DH3BB2–·(Na+[2.2.1])2 to
a Cs+ ion in CH2Cl2/CH3CN (6/1, v/v) roughly estimated by
dilution experiments was ca. 106 M-1 (Fig. S13c,d, ESI†),
which is of the same order of magnitude as that to a Na+ ion,
probably due to the solvent effect of nonpolar CH2Cl2.15
15 R. M. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening,
Chem. Rev., 1995, 95, 2529–2586.
16 For reviews of fluorogenic sensing of alkali metals, see: (a)
G. R. C. Hamilton, S. K. Sahoo, S, Kamila, N. Singh, N.
Kaur, B. W. Hylanda and J. F. Callan, Chem. Soc. Rev., 2015,
44, 4415–4432; (b) J. Yin, Y. Hua and J. Yoon, Chem. Soc.
Rev., 2015, 44, 4619–4644.
17 For reviews of chiral fluorescent chemosensors, see: (a) L. Pu,
Chem. Rev., 2004, 104, 1687–1716; (b) G. A. Hembury, V.
V. Borovkov and Y. Inoue, Chem. Rev., 2008, 108, 1–73; (c)
X. Zhang, J. Yin and J. Yoon, Chem. Rev., 2014, 114, 4918–
4959.
3
4
E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai and
K. Maeda, Chem. Rev., 2016, 116, 13752–13990.
K. Miwa, Y. Furusho and E. Yashima, Nat. Chem., 2010, 2,
444–449.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins