10.1002/adsc.201700169
Advanced Synthesis & Catalysis
References
When the luminogen molecule becomes aggregate,
restrict the intramolecular vibration and makes them
highly emissive, thus showing aggregation induced
emission (AIE) effect.
[1] a) M. R Elliott, A.-L. Dhimane, M. Malacria, J. Am.
Chem. Soc. 1997, 119, 3427-3428; b) X. Liu, M.
Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 2004, 43,
879-882; Angew. Chem. 2004, 116, 897-900; c) H.
Weinstabl, M. Suhartono, Z. Qureshi, M. Lautens,
Angew. Chem. Int. Ed. 2013, 52, 5305-5308; Angew.
Chem. 2013, 125, 5413-5416; d) M. L Beer, J. Lemon,
J. F. Valliant, J. Med. Chem. 2010, 53, 8012-8020; e) Y.
Ni, R. M. Kassab, M. V. Chevliakov, J. Montgomery, J.
Am. Chem. Soc. 2009, 131, 17714-17718; f) N. F.
Mckinley, D. F. O’Shea, J. Org. Chem. 2006, 71, 9552-
9555; g) C. S. Higman, J. A. M. Lummiss and D. E.
Fogg, Angew. Chem., Int. Ed. 2016, 55, 3552-3565;
Angew. Chem. 2016, 128, 3612-3626.
The results obtained clearly indicate that the
compounds 3n-u were non-luminescent in CH3CN
solution, but highly luminescent in the condensed
phase (see supporting information, table S1). The
absorption maxima of the compounds 3n-u measured
in a 90% H2O/CH3CN solution were found to be in
the range of 383 and 465 nm and in the thin film
between 391 and 474 nm. The PL spectra of
compounds 3n-u showed emission maxima in the
range of 552-625 nm for the aggregated solutions and
551-638 nm for thin film when excited at 420 nm.
This new class of tetrasubstituted olefins displayed a
distinct solid state fluorescence with large Stokes
shift values and is promising candidates for
aggregation induced emission (AIE) fluorophores
with rigid structure.
[2] a) Q. Yao, Y. Zhang, J. Am. Chem. Soc. 2004, 126, 74-
75; b) E.-I. Negishi, Z. Huang, G. Wang, S. Mohan, C.
Wang, H. Hattori, Acc. Chem. Res. 2008, 41, 1474-
1485; c) S.-M. Paek, Molecules, 2012, 17, 3348-3358;
d) S. Liu, L. Tang, H. Chen, F. Zhao, G.-J. Deng, Org.
Biomol. Chem. 2014, 12, 6076-6079; e) J. Chen, S.
Chen, X. Xu, Z. Tang, C.-T. Au, R. Qiu, J. Org. Chem.
2016, 81, 3246-3255; f) A. Gansauer, M. Pierobon, H.
Bluhm, Angew. Chem. Int. Ed. 2002, 41, 3206-3208;
Angew. Chem. 2002, 114, 3341-3343; g) X. Tong, J.
Kallmerten, Synlett. 1992, 845-846.
In summary, we have developed
a novel
palladium(0)-catalyzed two component triple domino
process which allows the synthesis of helical
tetrasubstituted
olefins
through
double
carbopalladation and C-H activation of 2-bromoaryl
alkynyl biaryls/heteroaryls with norbornene. The key
step involved in this process is the formation of
vinylicpalladium(II) intermediate via 5-exo-dig
carbopalladation
of
cis-exo-
[3] a) J. Vicario, M. Walko, A. Meetsma, B. L. Feringa, J.
Am. Chem. Soc. 2006, 128, 5127-5135; b) B. L. Feringa,
R. A. van Delden, N. Koumura, E. M. Geertsema,
Chem. Rev. 2000, 100, 1789-1816; c) J. Wang, B. L.
Feringa, Science, 2011, 331, 1429-1432; d) J. Luo, K.
Song, F. L. Gu, Q. Miao, Chem. Sci. 2011, 2, 2029-
2034; e) L. F. Tietze, B. Waldecker, D. Ganapathy, C.
Eichhorst, T. Lenzer, K. Oum, S. O. Reichmann, D.
Stalke, Angew. Chem. Int. Ed. 2015, 54, 10317-10321;
Angew. Chem. 2015, 127, 10457-10461.
arylnorbornylpalladium(II) intermediate onto the
alkyne. This methodology offers a straight and
pragmatic
way
to
synthesize
congested
tetrasubstituted olefins in good yields through
multiple C-C bond formations. The synthesized,
norbornene fused 9H-pyrrolo[1,2-a]indoles display
fluorescence properties and are promising new class
of solid fluorophores with rigid tetrasubstituted olefin
units. Further studies to explore new complex
molecules
based
on
norbornene
insertion
[4] For selected examples of inter-/ intramolecular addition
of arylpalladium intermediates to tethered alkynes, see:
a) C. Zhou, D. E. Emrich, R. C. Larock, Org. Lett.
2003, 5, 1579-1582; b) K. Shibata, T. Satoh, M. Miura,
Org. Lett. 2005, 7, 1781-1783; c) D. Fujino, H.
Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2011, 133,
9682-9685; d) A. Pinto, L. Neuville, J. Zhu, Angew.
Chem. Int. Ed. 2007, 46, 3291-3295; Angew. Chem.
2007, 119, 3355-3359; e) G. C. Senadi, W-P. Hu, S. S.
K. Boominathan, J-J. Wang, Adv. Synth. Catal. 2013,
355, 3679-3693; f) L. T. Tietze, T. Hungerland, A.
Düfert, I. Objartel, D. Stalke, Chem. Eur. J. 2012, 18,
3286-3291; g) S. M. A. Rahman, M. Sonoda, K.
Itahashi, Y. Tobe, Org. Lett. 2003, 5, 3411-3414; h) D.
M. D'Souza, C. Muschelknautz, F. Rominger, T. J. J.
Muller, Org. Lett. 2010, 12, 3364-3367; i) H. Yu, R. N.
Richey, M. W. Carson, M. J. Coghlan, Org. Lett. 2006,
8, 1685-1688; j) T. Castanheiro, M. Donnard, M. Gulea,
J. Suffert, Org. Lett. 2014, 16, 3060-3063; k) L. F.
Tietze, K. Kahle, T. Raschke, Chem. Eur. J. 2002, 8,
401-407.
methodology is currently underway in our laboratory.
Experimental Section
General Procedure for the Synthesis of 3
In a clean oven-dried 50 ml two-necked round-bottomed
flask charged with mixture of norbornene 2 (1.5 equiv.),
Pd(PPh3)4 (10 mol %) and K2CO3 (3.0 equiv.) a solution of
2-bromoaryl alkynyl biaryls/heteroaryls 1 (0.3 mmol) in
1,4-dioxane (4 mL) was added under a N2 atmosphere. The
resulting solution was stirred at 100 °C for 3h (monitored
by TLC). Upon completion, the reaction mass was cooled
to room temperature; ethyl acetate and water were added.
The organic layer was separated, dried with anhydrous
Na2SO4 and concentrated under reduced pressure. The
crude material was purified by column chromatography
using silica gel to afford the product 3.
Acknowledgements
The author K.N. thanks the Council of Scientific and Industrial
Research (CSIR), New Delhi, India for the research fellowship.
[5] a) A. Nandakumar, P. T. Perumal, Org. Lett. 2013, 15,
382-385; b) K. Naveen, D. Muralidharan, P. T. Perumal,
5
This article is protected by copyright. All rights reserved.