2796
J. A. Chaplin et al. / Tetrahedron: Asymmetry 15 (2004) 2793–2796
2. Sato, T.; Tosa, T. Bioprocess Technol. 1993, 16, 3–14.
3. Bommarius, A.; Drauz, K.; Gunther, K.; Knaup, G.;
¨
conversions at higher substrate concentration
(>25mM). Nitrilase 5086 was the most promising, and
high conversion was achieved at 100mM substrate
through the addition of two aliquots of enzyme. The
presence of a conserved cysteine in the putative catalytic
triad22 suggested that the addition of a reducing agent
might enhance enzyme stability. In the presence of
1mM dithiothreitol (DTT), a single addition of enzyme
at 1mg/mL was possible; the level of DTT could be
reduced to 0.1mM when the reaction was performed
under nitrogen. Further improvement of enzyme per-
formance resulted from the addition of 15% MeOH
and lowering the reaction temperature from 37°C to
ambient. Having established these conditions, the reac-
tion was reproducibly scaled up to 100mM (1g of 7b;
1mg/mL lyophilized lysate of Nitrilase 5086 in 0.1M
Tris–HCl pH8.5). Complete conversion of the substrate
to (R)-N-formyl-4-fluorophenylglycine 8b was typically
observed in 24h. After standard work-up, the product
was isolated as a crude colorless solid, affording a yield
of 87% and ee of 98–99%.
Schwarm, M. Tetrahedron: Asymmetry 1997, 8, 3197–
3200.
4. (a) Pietzsch, M.; Syldatck, C. In Enzyme Catalysis in
Organic Synthesis, 2nd ed.; Drauz, K., Waldmann, H., Eds.,;
Wiley-VCH Verlag GmbH: Weinheim, 2002; pp 761–798;
(b) Rozzell, D.; Bommarius, A. In Enzyme Catalysis in
Organic Synthesis; Drauz, K., Waldmann, H., Eds.,
2nd ed.; Wiley-VCH Verlag GmbH: Weinheim, 2002; pp
873–894; (c) Bommarius, A. In Enzyme Catalysis in
Organic Synthesis, 2nd ed.; Drauz, K., Waldmann, H.,
Eds.; Wiley-VCH Verlag GmbH: Weinheim, 2002; pp
1047–1063.
5. Boesten, W. H. J.; Seerden, J.-P.; de Lange, B.; Dielemans,
H. J. A.; Elsenberg, H. L. M.; Kaptein, B.; Moody, H. M.;
Kellogg, R. M.; Broxterman, Q. B. Org. Lett. 2001, 3,
1121–1124.
6. Ishitani, H.; Hasegawa, Y.; Komiyama, S.; Kobayashi, S.
J. Am. Chem. Soc. 2000, 122, 762–766.
7. Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 159–
160.
8. DeSantis, G.; Zhu, Z.; Greenberg, W. A.; Wong, K.;
Chaplin, J. A.; Hanson, S. R.; Farwell, B.; Nicholson, L.
W.; Rand, C. L.; Weiner, D. P.; Robertson, D. E.; Burk,
M. J. J. Am. Chem. Soc. 2002, 124, 9024–9025.
9. Macadam, A. M.; Knowles, C. J. Biotechnol. Lett. 1985, 7,
865–870.
3. Conclusion
Two novel approaches to the chemoenzymatic produc-
tion of aromatic amino acids have been described. The
ability of nitrilases to function at high pH has been estab-
lished, with phenylglycine and 4-fluorophenylglycine
produced with high enantioselectivity. In order to in-
crease the yields, N-acyl aminonitriles were explored
and found to allow krac to exceed enzymatic hydrolysis,
thereby establishing conditions for dynamic kinetic
asymmetric synthesis. In one example, N-formyl-4-fluoro-
phenylglycine was obtained in 87% yield and 99% ee. The
versatility of our nitrilase collection has been further
extended by demonstrating function at high pH and high
specificity for derivatives of phenylglycinonitrile.
10. Bhalla, T. C.; Muira, A.; Wakamoto, A.; Ohba, Y.;
Furuhashi, K. Appl. Microbiol. Biotechnol. 1992, 37, 184–
190.
11. Brady, D.; Beeton, A.; Zeevaart, J.; Kgaje, C.; van
Rantwijk, F.; Sheldon, R. Appl. Microbiol. Biotechnol.
2004, 64, 76–85.
12. Choi, S. Y.; Goo, Y. M. Arch. Pharm. Res. 1986, 9, 45–47.
13. Ward, R. S. Tetrahedron: Asymmetry 1995, 6, 1475–1490.
14. Yong, Y. F. Ph.D. Thesis. Purdue University, 1988.
15. Marshall, G. C.; Wright, G. D. Biochem. Biophys. Res.
Commun. 1996, 219, 580–583.
16. Wegman, M. A.; Hacking, M. A. P. J.; Rops, J.; Pereira,
P.; van Rantwijk, F.; Sheldon, R. A. Tetrahedron:
Asymmetry 2001, 10, 1739–1750.
17. Hylton, T. A.; Shenton, F. L. U.S. Patent 4,072,698, 1978.
18. Ebbers, E. J.; Ariaans, G. J. A.; Houbiers, J. P. M.;
Bruggink, A.; Zwanenburg, B. Tetrahedron 1997, 53,
9417–9476.
Acknowledgements
The authors would like to thank the following for tech-
nical support and helpful discussions: Dan Robertson,
David Weiner, Iris Saliba, Kevin Keegan, Pei Chen,
Hongjun Huang, Tamara Bowden, Weixing Chen,
Grace DeSantis, Roger Gaudette and Jay Short.
19. Anderson, N. G. In Practical Process Research and
Development; Academic: San Diego, 2000; p 64.
20. Bauer, A.; Layh, N.; Syldatck, C.; Willets, A. J. 1996, 18, ,
pp 343–348.
21. (a) Beller, M.; Eckert, M.; Geissler, H.; Napierski, B.;
Rebenstock, H.-P.; Holla, E. W. Chem. Eur. J. 1998, 4,
935–941; (b) Sonke, T.; Kaptein, B.; Wagner, A. F. V.;
Quaedflieg, P. J. L. M.; Schultz, S.; Ernste, S.; Schepers,
A.; Mommers, J. H. M.; Broxterman, Q. B. J. Mol. Catal.
B: Enzym. 2004, 29, 265–277.
References
1. Kamphuis, J.; Boesten, W. H. J.; Broxterman, Q. B.;
Hermes, H. F. M.; van Balken, J. A. M.; Meijer, E. M.;
Schoemaker, H. E. Adv. Biochem. Eng. Biotechnol. 1990,
42, 134–186.
22. Nakai, T.; Hasegawa, T.; Yamahsita, E.; Yamamoto, M.;
Kumasaka, T.; Ueki, T.; Nanba, H.; Ikenaka, Y.;
Takahashi, S.; Sato, M.; Tsukihara, T. Structure 2000, 8,
729–739.