3-Alkenyl-2-silyloxyindoles
10-mL round-bottomed flask containing a portion of diisopropyl-
ethylamine (90 μL, 0.52 mmol, 2.0 equiv.) cooled to –20 °C was se-
quentially added SiCl4 (1 m in CH2Cl2, 310 μL, 0.31 mmol,
1.2 equiv.), DMF (8 μL, 0.10 mmol, 0.4 equiv.), a solution of 4-
nitrobenzaldehyde (3a; 39 mg, 0.26 mmol, 1.0 equiv.) in anhydrous
CH2Cl2 (1.0 mL), and a solution of silyloxyindole 2b (100 mg,
0.26 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (1.0 mL). The re-
sulting mixture was stirred at –20 °C for 12 h, whereupon a satu-
rated aqueous solution of NaHCO3 (3.0 mL) was added allowing
the temperature of the mixture to reach room temperature. The two
phases were separated, and the aqueous phase was washed with
CH2Cl2 (3ϫ 3 mL) and EtOAc (1ϫ 3 mL). The organic layers were
collected, dried with MgSO4, and filtered, and the filtrate was con-
centrated in vacuo. The diastereomeric ratio (Z/E) of the addition
products was determined to be 92:8 by 1H NMR spectroscopic
analysis of the crude reaction mixture. The crude residue was puri-
fied by silica gel flash chromatography (petroleum ether/EtOAc,
75:25) to give (Ϯ)-(Z)-4ba (65 mg, 59%) as white crystals (CH2Cl2/
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures, copies of the 1H NMR and
13C NMR spectra, and chiral HPLC traces.
Acknowledgments
We gratefully acknowledge the Regione Autonoma della Sardegna
(L.R. 07.08.2007, n.7) and Università degli Studi di Parma for fin-
ancial support. R.T. thanks the Regione Autonoma della Sardegna
for a M&B fellowship. We thank the Centro Interdipartimentale
Misure “G. Casnati” (Università degli Studi di Parma) for instru-
mental facilities. We also thank Eugenia Accorsi Buttini (Uni-
versità degli Studi di Parma) for preliminary experiments.
[1] a) C. Marti, E. M. Carreira, Eur. J. Org. Chem. 2003, 2209–
2219; b) G. Cerchiaro, A. M. da Costa Ferreira, J. Braz. Chem.
Soc. 2006, 17, 1473–1485; c) E. Fattorusso, O. Taglialatela-
Scafati in Modern Alkaloids. Structure, Isolation, Synthesis and
Biology, Wiley-VHC, Weinheim, 2008; d) C. V. Galliford, K. A.
Scheidt, Angew. Chem. 2007, 119, 8902–8912; Angew. Chem.
Int. Ed. 2007, 46, 8748–8758; e) S. Peddibhotla, Curr. Bioact.
Compd. 2009, 5, 20–38; f) A. B. Dounay, L. E. Overman,
Chem. Rev. 2003, 103, 2945–2964; g) A. U. Rahman, A. Basha
in Indole Alkaloids, Hartwood Academic Publishers, Amster-
dam, 1997; h) B. M. Trost, M. K. Brennan, Synthesis 2009,
3003–3025.
[2] a) J. Polonsky, M.-A. Merrien, T. Prangé, C. Pascard, S. Mo-
reau, J. Chem. Soc., Chem. Commun. 1980, 601–602; b) T.
Prangé, M.-A. Buillion, M. Vuilhorgne, C. Pascard, J. Polon-
sky, Tetrahedron Lett. 1981, 22, 1977–1980; c) M. Yamazaki,
E. Okuyama, M. Kobayashi, H. Inoue, Tetrahedron Lett. 1981,
22, 135–136.
[3] a) K. Stratmann, R. E. Moore, R. Bonjouklian, J. B. Deeter,
G. M. L. Patterson, S. Shaffer, C. D. Smith, T. A. Smitka, J.
Am. Chem. Soc. 1994, 116, 9935–9942; b) J. I. Jimenez, U.
Huber, R. E. Moore, G. M. L. Patterson, J. Nat. Prod. 1999,
62, 569–572.
[4] a) T. G. Wormley, Am. J. Pharm. 1870, 42, 1–16; b) F. M. Lov-
ell, R. Pepinsky, A. J. C. Wilson, Tetrahedron Lett. 1959, 1, 1–
5; c) H. Conroy, J. K. Chakrabarti, Tetrahedron Lett. 1959, 1,
6–13.
[5] For representative reviews concerning the C-3 functionalization
of oxindoles, see: a) W. C. Sumpter, Chem. Rev. 1945, 37, 443–
479; b) F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010,
352, 1381–1407; c) A. Millemaggi, R. J. K. Taylor, Eur. J. Org.
Chem. 2010, 4527–4547; for selected examples, see: d) S. Adhi-
kari, S. Caille, M. Hanbauer, V. X. Ngo, L. E. Overman, Org.
Lett. 2005, 7, 2795–2797; e) J. M. Ellis, L. E. Overman, H. R.
Tanner, J. Wang, J. Org. Chem. 2008, 73, 9151–9154; f) G.
Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi, F. Pesciaioli,
M.-P. Song, G. Bartoli, P. Melchiorre, Angew. Chem. 2009, 121,
7336–7339; Angew. Chem. Int. Ed. 2009, 48, 7200–7203; g) K.
Shen, X. H. Liu, K. Zheng, W. Li, X. L. Hu, L. L. Lin, X. M.
Feng, Chem. Eur. J. 2010, 16, 3736–3742; h) X.-L. Liu, X.-M.
Zhang, W.-C. Yuan, Tetrahedron Lett. 2011, 52, 903–906; i) X.-
L. Liu, Z.-J. Wu, X.-L. Du, X.-M. Zhang, W.-C. Yuan, J. Org.
Chem. 2011, 76, 4008–4017.
1
hexane). M.p. 130–132 °C. H NMR (400 MHz, CDCl3): δ = 8.20
(d, J = 8.8 Hz, 2 H, Ar), 7.80 (d, J = 7.8 Hz, 1 H, H7), 7.69 (d, J
= 8.6 Hz, 2 H, Ar), 7.59 (d, J = 7.6 Hz, 1 H, H4), 7.32 (ddd, J =
7.6, 7.6, 1.1 Hz, 1 H, H6), 7.19 (ddd, J = 7.7, 7.7, 1.0 Hz, 1 H, H5),
5.20 (ddd, J = 9.2, 5.3, 3.8 Hz, 1 H, H4Ј), 3.57 (d, J = 5.3 Hz, 1
H, OH), 3.45 (dd, J = 12.4, 9.1 Hz, 1 H, H3Јa), 3.32 (dd, J = 12.4,
3.8 Hz, 1 H, H3Јb), 2.37 (s, 3 H, H1Ј), 1.68 (s, 9 H, tBu, Boc) ppm.
13C NMR (100 MHz, CDCl3): δ = 167.4 (Cq), 155.8 (Cq), 152.0
(Cq), 148.9 (Cq), 147.2 (Cq), 138.1 (Cq), 128.5 (CH), 126.4 (2 C,
CH), 124.5 (Cq), 124.1 (CH), 123.8 (CH), 123.7 (2 C, CH), 123.5
(Cq), 114.7 (CH), 84.7 (Cq), 73.6 (CH), 46.9 (CH2), 28.1 (3 C,
CH3), 25.8 (CH3) ppm. MS (ESI, 50 eV): m/z = 447.1 [M + Na]+.
C23H24N2O6 (424.45): calcd. C 65.08, H 5.70, N 6.60; found C
65.01, H 5.78, N 6.52.
Preparation of Oxindole (R,Z)-4ba as a Representative Procedure
for the Catalytic, Asymmetric SiCl4-Assisted VMAR: Diisopropyl-
ethylamine (4.5 μL, 0.025 mmol, 0.1 equiv.) was added by syringe
to a flame-dried, 20-mL, two-necked round-bottomed flask con-
taining
a
solution of bisphosphoramide (R,R)-5 (6.5 mg,
0.007 mmol, 0.03 equiv.) in anhydrous CH2Cl2 (1.2 mL) under an
argon atmosphere. The resulting solution was cooled to –78 °C
(bath temperature) over 15 min, then SiCl4 (1 m in CH2Cl2, 284 μL,
0.28 mmol, 1.1 equiv.) was added in one portion. After 10 min, 4-
nitrobenzaldehyde (3a; 43 mg, 0.28 mmol, 1.1 equiv.) was added in
one portion followed by the slow dropwise addition (over 5 min)
of a solution of silyloxyindole 2b (100 mg, 0.26 mmol, 1.0 equiv.)
in anhydrous CH2Cl2 (1.0 mL). The resulting mixture was stirred at
–78 °C for 8 h, whereupon a solution NaHCO3 (43 mg, 0.50 mmol,
2.0 equiv.) in H2O (1.5 mL) was added, and the temperature was
allowed to reach room temperature. This biphasic mixture was
promptly separated, and the aqueous phase was washed with
EtOAc (3ϫ5 mL). The organic layers were collected, dried with
MgSO4, and filtered, and the filtrate was concentrated. The dia-
stereomeric ratio of the addition products was determined to be
1
84:16 (68% conversion) by H NMR spectroscopic analysis of the
crude reaction mixture. The crude residue, dissolved in EtOAc, was
purified by silica gel flash chromatography (petroleum ether/
EtOAc, 85:15) to yield (R,Z)-4ba (41 mg, 37%) as colorless crystals.
M.p. 143–144 °C (CH2Cl2/hexane). [α]2D0 = –28.8 (c = 0.6, CHCl3).
1H and 13C NMR spectroscopic data as for the corresponding race-
mic compound (vide supra). HPLC [Regis (S,S)-Whelk-O 1, 20 °C,
hexane/EtOH = 70:30, 0.6 mL/min, 254 nm): tR = 12.63 (minor),
13.42 min (major); er = 95:5. Bisphosphoramide (R,R)-5 was al-
most quantitatively recovered by washing the silica chromatog-
raphy pad with a EtOAc/NH3-saturated MeOH (90:10).
[6] For an early example of a base-assisted Claisen-type vinylog-
ous condensation of 3-ethylidene oxindole with ethyl oxalate,
see: L. Horner, Justus Liebigs Ann. Chem. 1941, 548, 117–146.
[7] For representative reviews on this subject, see: a) G. Casiraghi,
F. Zanardi, G. Appendino, G. Rassu, Chem. Rev. 2000, 100,
1929–1972; b) G. Casiraghi, F. Zanardi, L. Battistini, G. Rassu,
Synlett 2009, 1525–1542; c) G. Casiraghi, L. Battisitni, C.
Curti, G. Rassu, F. Zanardi, Chem. Rev. 2011, 111, 3076–3154;
d) S. E. Denmark, J. R. Heemstra Jr., G. L. Beutner, Angew.
Chem. 2005, 117, 4760–4777; Angew. Chem. Int. Ed. 2005, 44,
4682–4698; e) T. Brodmann, M. Lorenz, R. Schackel, S. Sim-
Eur. J. Org. Chem. 2012, 466–470
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
469