Communications
1218C (decomp, darkening above 708C). 1H NMR (300 MHz,
[8] In addition to the binary intermetallic phases InxBiy only some
2
ꢀ
[D8]toluene, ꢀ108C): d = 0.32 (s, 18H; SiMe3), 0.97 ppm (d, JTl-H
=
Zintl anions are known with In Bi bond lengths ranging from
313 Hz, 6H; TlMe2). 13C{1H} NMR (75 MHz, [D8]toluene, ꢀ108C):
d = 4.3 (s; SiMe3), 12.4 ppm (d, 1JTl-C = 2304 Hz; TlMe2). MS (EI,
12 eV, 1508C) m/z (%) = 442 (76) [As2(SiMe3)4]+, 354 (11) [As2(SiM-
e3)2(SiMe2)]+, 339 (11) [As2(SiMe3)(SiMe2)2]+, 294 (30)
[(As(SiMe3)3]+, 266 (61) [As2(SiMe2)2]+, 233 (24) [TlMe2]+, 203 (9)
Tl+, 131 (15) [Si2Me5]+, 73 (100) [SiMe3]+.
2.83–3.15 . a) R. Kubiak, Z. Anorg. Allg. Chem. 1977, 431, 261;
b) L. Xu, S. C. Sevov, Inorg. Chem. 2000, 39, 5383; c) S. Bobev,
S. C. Sevov, J. Solid State Chem. 2002, 163, 436.
[9] A. F. Holleman, E. Wiberg, Lehrbuch der Anorganischen
Chemie, 101th ed., W. de Gruyter, Berlin, 1995, p. 1838.
[10] The formation of the heterocycles was unequivocally proven by
NMR spectroscopy.
Received: July 8, 2003 [Z52332]
[11] [{Me2AlBi(SiMe3)2}3] fails to react with InMe3 at the required
low-temperature conditions (ꢀ508C). Only upon the addition of
an equimolar amount of dmap is a fast and complete reaction
achieved.
[12] In THF, solvent-stabilized monomeric units [(iBu)2Al(thf)PH2]
are formed. M. Driess, C. Monse, Z. Anorg. Allg. Chem. 2000,
626, 1091.
[13] a) E. Hey-Hawkins, M. F. Lappert, J. L. Atwood, S. G. Bott, J.
Chem. Soc. Dalton Trans. 1991, 939; b) R. L. Wells, A. T.
McPhail, T. M. Speer, Eur. J. Solid State Inorg. Chem. 1992, 29,
63.
[14] Despite the presence of two NMR-active Tl isotopes, only a
single coupling is observed in the NMR spectra.
Keywords: Group 13 elements · Group 15 elements ·
.
heterocycles · main group element · metathesis
[1] See the following and references in: S. Schulz, Struct. Bonding
(Berlin) 2002, 103, 117.
[2] Several indium hydrides have been synthesized within the last
decade, whereas to the best of our knowledge molecular thallium
hydrides are unknown to date. S. Aldridge, A. J. Downs, Chem.
Rev. 2001, 101, 3305.
[3] S. Schulz, M. Nieger, Angew. Chem. 1999, 111, 1020; Angew.
Chem. Int. Ed. 1999, 38, 967.
[4] F. Thomas, T. Bauer, S. Schulz, M. Nieger, Z. Anorg. Allg. Chem.
2003, 629, 2018.
[5] Detailed studies on the reaction of base-stabilized compounds of
[15] 2: C16H48P2Si4Tl2, Mr = 823.58, colorless crystal 0.40 0.30
¯
0.20 mm; triclinic, space group P1 (No. 2); a = 9.2585(2), b =
9.5727(2), c = 9.6569(3) , a = 77.581(1), b = 81.497(1), g =
64.991(2)8, V= 755.92(3) 3; Z = 1; m = 10.910 mmꢀ1; 1calcd
=
1.809 gcmꢀ3
; 10498 reflections (2qmax = 558), 3378 unique
ꢀ
the type [dmap Al(Me2)E(SiMe3)2] (E = P, Sb) with MMe3
(Rint = 0.049), 109 parameters; largest max./min. in the final
difference Fourier synthesis: 1.709 eꢀ3/ꢀ2.514 eꢀ3; max./
min. transmission 0.1589/0.0846; R1 = 0.029 (I > 2s(I)), wR2 =
0.072. 3: C16H48As2Si4Tl2, Mr = 911.48, colorless crystal 0.40
(M = Al, Ga, In) demonstrate the initial formation of the
ꢀ
ꢀ
corresponding adducts [dmap Al(Me2)E(SiMe3)2 MR3], which
ꢀ
ꢀ
consequently undergo Al E bond breakage and M E bond
formation reactions. F. Thomas, S. Schulz, M. Nieger, Organo-
metallics 2003, 22, 3471.
¯
0.35 0.30 mm; triclinic, space group P1 (No. 2); a = 9.2985(4),
b = 9.4604(3), c = 9.7580(4) , a = 78.332(2), b = 82.125(2), g =
[6] F. Thomas, S. Schulz, M. Nieger, Organometallics 2002, 21, 2793.
[7] Single-crystal X-ray diffraction: Nonius Kappa CCD diffrac-
tometer (MoKa radiation, l = 0.71073 ; T= 123(2) K). The
structures were solved by direct methods (SHELXS-97, G. M.
Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467) and refined by
full-matrix least-squares on F2 (G. M. Sheldrick, SHELXL-97,
Program for Crystal Structure Refinement, Universität Göttin-
gen, Göttingen (Germany), 1997). All non-hydrogen atoms were
refined anisotropically and hydrogen atoms by a riding model.
66.191(2)8, V= 767.64(5) 3; Z = 1; m = 12.779 mmꢀ1; 1calcd
1.972 gcmꢀ3; 6618 reflections (2qmax = 558), 3321 unique (Rint
=
=
0.055), 109 parameters; largest max./min. in the final difference
Fourier synthesis: 2.177 eꢀ3/ꢀ3.042 eꢀ3; max./min. transmis-
sion 0.1311/0.0639; R1 = 0.038 (I > 2s(I)), wR2 = 0.093. CCDC-
213920 (1), CCDC-213921 (2), and CCDC-213922 (3) contain
the supplementary crystallographic data for this paper. These
conts/retrieving.html (or from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax:
(+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
Empirical
absorption
corrections
were
applied. 1:
C24H72Bi3In3Si6, Mr = 1500.76, colorless crystal, 0.45 0.40
0.35 mm; monoclinic, space group P2(1)/n (No. 14); a =
9.6601(2), b = 20.9419(4), c = 24.8825(5) , b = 96.354(1)8, V=
[16] a) G. Mꢀller, J. Lachmann, Z. Naturforsch. B 1993, 48, 1544;
b) R. A. Baldwin, R. L. Wells, P. S. White, Main Group Chem.
1997, 2, 67.
5002.83(17) 3; Z = 4; m = 12.031 mmꢀ1
; ;
1calcd = 1.993 gcmꢀ3
41988 reflections (2qmax = 508), 8812 unique (Rint = 0.070), 325
[17] D. Huang, J. D. Corbett, Inorg. Chem. 1998, 37, 4006.
[18] F. Thomas, S. Schulz, M. Nieger, Z. Anorg. Allg. Chem. 2002,
628, 235.
parameters; largest max./min. in the final difference Fourier
; max./min. transmission
0.1084/0.0751; R1 = 0.035 (I > 2s(I)), wR2 = 0.065.
ꢀ3
synthesis: 1.068 eꢀ3/ꢀ1.366 e
5644
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 5641 –5644