Chemistry Letters 2002
1249
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Science,
Sports and Culture of Japan, and The San-Ei Gen Foundation for
Food Chemical Research. N. F. is grateful to the JSPS for a
research Fellowship for Young Scientists.
References and Notes
1
R. H. F. Manske, Can. J. Res., Sect. B, 16, 438 (1938); R. Hodges and A. L. Porte,
Tetrahedron, 20, 1463 (1964); T. Wada and D. Satoh, Chem. Pharm. Bull., 12, 752
(1964); G. R. Pettit, C. L. Herald, R. H. Ode, P. Brown, D. J. Gust, and C. Michel, J.
Nat. Prod., 43, 752 (1980).
2
R. S. Burden and H. F. Taylor, Tetrahedron Lett., 47, 4071 (1970); H. F. Taylor
and R. S. Burden, Proc. R. Soc. London, Ser. B, 180, 317 (1972); R. S. Burden and
H. F. Taylor, Pure Appl. Chem., 47, 203 (1976); M. Kobayashi, A. Kawabata, A.
Chindanondra, and A. Sakurai, Agric. Biol. Chem., 54, 2723 (1990).
F. T. Addicott, ‘‘Abscisic Acid,’’ Praeger, New York, NY (1983).
M. Kuniyoshi, Bot. Mar., 28, 501 (1985); A. L. Okunabe and D. F. Weimer, J. Nat.
Prod., 48, 472 (1985).
3
4
5
D. Behr, I. Wahlberg, T. Nishida, and C. R. Enzel, Acta Chem. Scand., Ser. B, 33,
701 (1979); B. N. Ravi, P. T. Murphy, R. O. Lidgard, R. G. Warren, and R. J.
Wells, Aust. J. Chem., 35, 171 (1982); F. J. Schmitz, D. J. Vanderah, K. H.
Hollenbeak, C. E. L. Enwall, Y. Gopichand, P. K. SanGupta, M. B. Hossain, and
D. van der Heim, J. Org. Chem., 48, 3941 (1983).
6
7
Recent review: A. J. Cutler and J. E. Krochko, Trends Plant Sci., 4, 472 (1999).
For loliolide: Z. Horii, T. Yanai, and M. Hanaoka, Chem. Commun., 1966, 634; E.
Demole and P. Enggist, Helv. Chim. Acta, 51, 481 (1968); Z. Horii, T. Yanagi, M.
Ito, and M. Hanaoka, Chem. Pharm. Bull., 16, 848 (1968); S. Isoe, S. B. Hyeon, S.
Katsumura, and T. Sakan, Tetrahedron Lett., 1972, 2517; O. Takazawa, K.
Kogami, and K. Hayashi, Chem. Lett., 1983, 63; F. Rouessac, H. Zamarlik, and N.
Gnonlofoun, Tetrahedron Lett., 24, 2247 (1983); H. Zamarlik, N. Gnonlonfoun,
and F. Rouessac, Can. J. Chem., 62, 2326 (1984); K. Mori and V. Khlebnikov,
Liebigs Ann. Chem., 1993, 77.
8
9
For xanthoxin: T. Oritani and K. Yamashita, Agric. Biol. Chem., 37, 1215 (1973);
F. Kienzle, H. Mayer, R. E. Minder, and H. Thommen, Helv. Chim. Acta, 61, 2616
(1978); K. Sakai, K. Takahashi, and T. Nukano, Tetrahedron, 48, 8229 (1992); H.
Yamamoto and T. Oritani, Planta, 200, 319 (1996), in which there is no
description concerning the diastereoselectivity.
N. Furuichi, H. Hara, T. Osaki, H. Mori, and S. Katsumura, Angew. Chem., 114,
1065 (2002); N. Furuichi, H. Hara, T. Osaki, H. Mori, and S. Katsumura, Angew.
Chem., Int. Ed., 41, 1023 (2002).
Scheme 2. Reagents and conditions: a) 7, tBuOK, ether, rt, 1 h; b) 1N HCl aq.,
THF, rt, 5 min; c) MnO2, ether, rt, 2 h, 49% for 3 steps; d) TBAF, THF, rt, 2 h,
76%; e) ClCH2PþPh3Clꢁ, nBuLi, THF, ꢁ30 ꢂC, 3 h; f) tBuOK, DMSO, rt,
20 min, 53% for 2 steps; g) nBu3SnH, PdCl2(PPh3)2, THF, rt, 10 min; h) 12,
PdCl2(CH3CN)2, CuI, DMF, 50 ꢂC, 20 h, 64% for 2 steps; i) LiAlH4, THF,
ꢁ25 ꢂC, 10 min, 83%; j) MnO2, ether, rt, 5 h, 92%.
10 T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 102, 5976 (1980); R. M.
Hanson and K. B. Sharpless, J. Org. Chem., 51, 1922 (1986); Y. Gao, R. M.
Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem.
Soc., 109, 5765 (1987).
Next, we examined the stereocontrolled synthesis of (ꢁ)-
xanthoxin and its stereoisomers. Thus, an acetylene derivative 10,
which was obtained from the epoxyaldehyde A9 was regio- and
stereoselectively transformed into (E)-vinylstannane 11 by the
Pd-catalyzed hydrostannylation (Scheme 2). The Stille coupling
of 11 with an ester 1215 in the presence of catalytic amounts of
PdCl2(CH3CN)2 and CuI in DMF smoothly proceeded, and the
corresponding couplingproduct 14 was obtained in 64% yield in 2
steps under complete retention of its stereochemistry. The
reaction of 11 with alcohol 13 unfortunately gave a complex
mixture due to the decomposition of the coupling product. The
synthesis of (ꢁ)-xanthoxin (2) was achieved by the hydride
reduction of 14 followed by MnO2 oxidation of the resulting allyl
alcohol moiety. The spectral and physical data of the synthesized
(ꢁ)-xanthoxin were in good agreement with those already
reported.16 Furthermore, the aldehyde B–D was transformed into
the corresponding stereoisomers of (ꢁ)-xanthoxin ((ꢁ)-epix-
anthoxin; 26% yield form B) by the same procedure. The
utilization of the Pd-catalyzed coupling thus demonstrated is a
new approach for the synthesis of xanthoxin and related
compounds.
11 In the Sharpless epoxidation of 3 with (þ)-diethyl-L-tartrate, the precise
reaction conditions applied in the case of (ꢁ)-diethyl-D-tartrate were not
needed, and the corresponding syn-epoxide 5 was obtained in 90–95% de
under reported conditions.10
22
12 Data for A: [ꢀ]D ꢁ76:84 (c 0.84, CHCl3); 1H NMR (400 MHz, CDCl3) ꢁ9.80 (s,
1H), 3.85 (m, 1H), 2.24 (ddd, 1H, J ¼ 14:6, 5.4, 1.2 Hz), 1.71 (dd, 1H, J ¼ 14:9,
7.6 Hz), 1.49 (ddd, 1H, J ¼ 13:2, 3.4, 1.2 Hz), 1.38 (s, 3H), 1.28 (dd, 1H, J ¼ 13:2,
9.0 Hz), 1.28 (s, 3H), 1.07 (s, 3H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H); 13CNMR
(100 MHz, CDCl3) ꢁ 200.40, 72.25, 66.13, 64.19, 46.28, 40.78, 33.55, 27.99,
25
26.21, 25.78, 20.59, 18.01, ꢁ4:79, ꢁ4:84. Data for B: [ꢀ]D þ21:58 (c 1.41,
CHCl3); 1H NMR (400 MHz, CDCl3) ꢁ 9.67 (s, 1H), 3.85 (m, 1H), 2.06 (ddd, 1H,
J ¼ 14:9, 7.6, 1.5 Hz), 1.88 (dd, 1H, J ¼ 14:9, 9.0 Hz), 1.55 (dd, 1H, J ¼ 12:4,
12.4 Hz), 1.36 (s, 3H), 1.31 (s, 3H), 1.16 (ddd, 1H, J ¼ 12:7, 4.2, 1.5 Hz), 1.07 (s,
3H), 0.86 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); 13C NMR (100 MHz, CDCl3) ꢁ
201.58, 73.02, 64.82, 63.54, 43.91, 39.59, 34.02, 26.33, 25.75, 23.96, 21.59, 18.02,
ꢁ4:66, ꢁ4:72.
13 K. Schonauer and E. Zbiral, Tetrahedron Lett., 24, 573 (1983).
21
14 Data for (ꢁ)-loliolide (1a): mp 150.5–151.5 ꢂC; [ꢀ]D ꢁ103:13 (c 0.79, CHCl3);
IR (KBr, cmꢁ1) 3436, 2978, 2924, 1734, 1721, 1620; 1H NMR (400 MHz, CDCl3)
ꢁ 5.69 (s, 1H), 4.33 (m, 1H), 2.48 (ddd, 1H, J ¼ 13:9, 2.9, 2.9 Hz), 2.25 (brm, 1H),
2.00 (ddd, 1H, J ¼ 14:4, 2.4, 2.4 Hz), 1.79 (s, 3H), 1.78 (dd, 1H, J ¼ 13:9, 4.2 Hz),
1.52 (dd, 1H, J ¼ 14:6, 3.7 Hz), 1.48 (s, 3H), 1.27 (s, 3H); 13CNMR (100 MHz,
CDCl3) ꢁ 182.90, 172.15, 112.64, 86.99, 66.54, 47.17, 45.52, 35.93, 30.58, 26.90,
26.39; Anal. Found: C, 67.01; H, 8.22%. Calcd for C11H16O3: C, 67.32; H, 8.22%.
15 S. Ma and X. Lu, Tetrahedron Lett., 31, 7653 (1990); I. Marek, A. Alexakis, and J.
F. Normant, Tetrahedron Lett., 32, 5329 (1992).
In conclusion, we achieved the efficient stereocontrolled
syntheses of (ꢁ)-loliolide, (ꢁ)-xanthoxin, and their stereoi-
somers. This is the first example that the stereochemistry in the
every stereoisomers of these oxidized metabolites has been
satisfactorily controlled. Our future interest is in the relationship
between the stereochemistry of our synthesized carotenoid
metabolites and their biological activities.
21
16 Data for (ꢁ)-xanthoxin (2): mp 90.0–91.0 ꢂC; [ꢀ]D ꢁ53:30 (c 0.88, CHCl3); IR
(KBr, cmꢁ1) 3501, 2932, 1659, 1628, 1588; 1H NMR (400 MHz, CDCl3) ꢁ 10.71
(d, 1H, J ¼ 8:3 Hz), 7.19 (d, 1H, J ¼ 15:4 Hz), 6.37 (d, 1H, J ¼ 15:4 Hz), 5.85 (d,
1H, J ¼ 7:8 Hz), 3.88 (m, 1H), 2.38 (ddd, 1H, J ¼ 14:4, 5.2, 1.5 Hz), 2.08 (d, 3H,
J ¼ 0:6 Hz), 1.60–1.70 (m, 2H), 1.25 (m, 1H), 1.19 (s, 3H), 1.18 (s, 3H), 0.97 (s,
3H); 13C NMR (100 MHz, CDCl3) ꢁ 190.39, 153.27, 134.60, 128.95, 127.78,
70.02, 67.28, 63.87, 46.70, 40.64, 35.14, 29.37, 24.95, 21.07, 19.88; Anal. Found:
C, 71.98; H, 8.93%. Calcd for C15H22O3: C, 71.97; H, 8.86%.