6944
R. Lagoutte, J. A. Wilkinson / Tetrahedron Letters 51 (2010) 6942–6944
Table 2
Reductive allylation of various substrates
Entry
Ester
Solvent, time
Producta
Yieldb(%)
1
2
10a: R1 = Me
PhMe, 2 h
PhMe, 24 h
11a: R1 = Me
11b: R1 = H
99
NR
CO2R1
O
10b: R1 = H
4
4
OR1
O
O
3
4
12a: n = 1
12b: n = 2
PhMe-d8, 2 h
PhMe, 2 h
13a: n = 1
13b: n = 2
99
99
5
12c: n = 3
PhMe, 2 h
13c: n = 3
88
R2
R3
O
O
R2
R3
O
6
7
8
9
5: R2 = R3 = H
PhMe, 2 h
PhMe, 2 h
PhMe, 24 h
PhMe, 2 h
8: R2 = R3 = H
94 (83)c
1: R2 = H, R3 = OTBS
4: R2 = H, R3 = OTBS
92 (80)c
14a: R2 = H, R3 = OH
14b: R2, R3 = OCH2O
15a: R2 = H, R3 = OH
15b: R2, R3 = OCH2O
89
89 (81)c
O
O
10
16
PhMe, 24 h
5
99
CO2Me
OMe
11
12
13
17a: R4 = H
PhMe, 24 h
PhMe, 24 h
PhMe, 24 h
18a: R4 = H
NR
25
NR
17b: R4 = 4-MeO
18b: R4 = 4-MeO
17c: R4 = 4-NO2
18c: R4 = 4-NO2
R4
R4
O
CO2Me
14
15
19
20
PhMe, 24 h
PhMe, 24 h
NR
NR
CO2Me
N
O
N
16
21
PhMe, 72 h
NR
a
b
c
All compounds were compared to literature precedents and all new compounds gave satisfactory spectral data.
Conversions determined by 1H NMR spectroscopy of the crude mixture, NR = no reaction.
Isolated yields on a multigram scale reaction.
Acknowledgements
H
N
H
N
O
O
O
O
O
O
We would like to thank EPSRC for provision of mass spectral
data and the University of Salford for a Ph.D. studentship for R.L.
O
O
(+)-22
(+)-23
Figure 1. Structures of erythrococcamides A (22) and B (23).
References and notes
OH
1. Baba, A.; Shibata, I. Chem. Rev. 2005, 5, 323–335.
O
O
O
O
O
O
O
O
O
ii
i
2. Yadav, J. S.; Reddy, B. V.; Reddy, M. S.; Parimala, G. Synthesis 2003, 2390–2394.
3. Sakai, N.; Kanada, R.; Hirasawa, M.; Konakahara, T. Tetrahedron 2005, 61, 9298–
9304.
4. Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. J. Org. Chem. 2008, 73,
4160–4165.
24
14b
iv
15b
H
N
O
O
O
O
O
CO2H
iii
5. Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2006, 71, 8516–8522.
6. Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2007, 72, 8588–8590.
7. Sun, G.; Sun, H.; Wang, Z.; Zhou, M.-M. Synlett 2008, 1096–1100.
8. Lee, O.-Y.; Law, K.-L.; Ho, C.-Y.; Yang, D. J. Org. Chem. 2008, 73, 8829–8837.
9. Sakai, N.; Moriya, T.; Konakahara, T. J. Org. Chem. 2007, 72, 5920–5922.
10. Sakai, N.; Fujii, K.; Konakahara, T. Tetrahedron Lett. 2008, 49, 6873–6875.
11. Raiber, E.-A.; Wilkinson, J. A.; Manetti, F.; Botta, M.; Deakin, J.; Gallagher, J.;
Lyon, M.; Ducki, S. W. Bioorg. Med. Chem. Lett. 2007, 17, 6321–6325.
12. Wilkinson, J. A.; Raiber, E.-A.; Ducki, S. Tetrahedron 2008, 64, 6329–6333.
13. General procedure for the reductive allylation of esters: a solution of the ester
(1 mmol, 1 equiv), triethylsilane (1.1 equiv) and allyltrimethylsilane (2 equiv)
in toluene (3 mL) was heated to 70 °C and InBr3 (0.1 equiv) was added in one
portion. The mixture was left to stir at this temperature for 2 h and then
poured into EtOAc (20 mL) containing water (0.1 mL). The solution was dried
over MgSO4, filtered through a pad of silica gel and concentrated, leading to a
mixture of hexaethydisiloxane and the homoallylic ether, which could be
purified by flash column chromatography, first using petroleum ether to elute
the hexaethydisiloxane by-product and then a mixture EtOAc and petroleum
ether, typically 1:6.
O
O
25
( )-23
Scheme 3. Total synthesis of erythrococcamide B. Reagents and conditions: (i)
methyl acrylate (3 equiv), TFA, 70 °C, 6 h, 67%; (ii) InBr3 (0.1 equiv), Et3SiH
(1.1 equiv), allyl-TMS (2.0 equiv), PhMe, 70 °C, 2 h, 81%; (iii) KMnO4 (0.2 equiv),
NaIO4 (6.0 equiv), K2CO3 (1.5 equiv), tBuOH/water 1:1, rt, 3 h, 77%; (iv) DCC
(1.1 equiv), HOBt (1.1 equiv), isobutylamine (1.5 equiv), CH2Cl2, 0 °C to rt, 12 h, 84%.
product, except for optical rotation.14 This represents the first total
synthesis of this natural product, which also confirms the proposed
structure.
We have reported an efficient method for the one-step reduc-
tive allylation of esters, allowing rapid access to aliphatic and ali-
cyclic homoallylic ethers. Studies are underway for the
development of an enantioselective version of this reaction using
Leighton’s reagent.16 We are also investigating the use of silyl
ketene acetals and propargyl, allenyl and alkynyl silanes as
nucleophiles.
14. Latif, Z.; Hartley, T. G.; Rice, M. J.; Waigh, R. D.; Waterman, P. G. J. Nat. Prod.
1998, 61, 614–619.
15. Lemieux, R. U.; von Rudloff, E. Can. J. Chem. 1955, 33, 1701–1709.
16. Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596–
9597.