9094
P. Blakskjær et al. / Tetrahedron Letters 45 (2004) 9091–9094
1997, 53, 7267–7274; (d) Steglich, W.; Ja¨ger, M.; Jaroch,
S.; Zistler, P. Pure Appl. Chem. 1994, 66, 2167–2170; (e)
Ja¨ger, M.; Polborn, K.; Steglich, W. Tetrahedron Lett.
1995, 36, 861–864; (f) Trojandt, G.; Polborn, K.; Steglich,
W.; Schmidt, M.; No¨th, H. Tetrahedron Lett. 1995, 36,
857–860; (g) Apitz, G.; Ja¨ger, M.; Jaroch, S.; Kratzel, M.;
Scha¨ffeler, L.; Steglich, W. Tetrahedron 1993, 49, 8223–
8232; (h) Apitz, G.; Steglich, W. Tetrahedron Lett. 1991,
32, 3163–3166.
mixture in an 80% yield. Finally, coupling of this com-
pound to cyclohexanone with SmI2 led to the C-alkyl-
ated cyclic tetrapeptide 14 as a 2:1 mixture of
diastereomers in a good 55% yield.11 This result clearly
illustrates the potential of this concept for the introduc-
tion of side chains onto cyclic peptides.
In conclusion, we have developed an alternative ap-
proach for the functionalization of serine residues in
small peptides which has been extended to a cyclic pep-
tide. Further work is in progress to test other cyclic pep-
tides and for the introduction of more relevant side
chains.
6. For some recent reviews on SmI2, see (a) Kagan, H.
Tetrahedron 2003, 59, 10351–10372; (b) Gansa¨uer, A.;
Bluhm, H. Chem. Rev. 2000, 100, 2771–2788; (c) Steel, P.
G. J. Chem. Soc., Perkin. Trans. 1 2001, 2727–2751; (d)
Molander, G. A.; Harris, C. R. Tetrahedron 1998, 54,
3321–3354.
7. The addition of 1% NiI2 to the reaction was found to
increase the yields of the couplings by 20–30%. In the
reaction of cyclohexanone with a dipeptide similar in
structure to 3 a 45% yield of the coupling product was
obtained in the absence of NiI2 (Ref. 1b).
8. (a) Ried, R. C.; Abbenate, G.; Taylor, S. M.; Fairlie, D. P.
J. Org. Chem. 2003, 68, 4464–4471; (b) Tamilarasu, N.;
Huq, I.; Rana, T. M. Bioorg. Med. Chem. Lett. 2000, 10,
971–974; (c) Dechantsreiter, M. A.; Planker, E.; Matha¨,
B.; Lohof, E.; Ho¨lzemann, G.; Jonczyk, A.; Goodman, S.
L.; Kessler, H. J. Med. Chem. 1999, 42, 3033–3040; (d)
Meutermans, W. D. F.; Bourne, G. T.; Golding, S. W.;
Horton, D. A.; Campitelli, M. R.; Craik, D.; Scanlon, M.;
Smythe, M. L. Org. Lett. 2003, 5, 2711–2714, and
references therein.
Acknowledgements
Generous financial support fromthe Danish Natural
Science Research Council, The HolmFoundation, the
Marie Curie Training Site programand the University
of Aarhus are gratefully acknowledged.
References and notes
1. (a) Ricci, M.; Madariaga, L.; Skrydstrup, T. Angew.
Chem., Int. Ed. 2000, 39, 242–246; (b) Ricci, M.;
Blakskjær, P.; Skrydstrup, T. J. Am. Chem. Soc. 2000,
122, 12413–12421.
9. Taunton, J.; Collins, J. L.; Schreiber, S. L. J. Am. Chem.
Soc. 1996, 118, 10412–10422.
2. For some representative examples of the use of glycyleno-
lates, see (a) Seebach, D.; Bech, A. K.; Studer, A. In
Modern Synthetic Methods; Ernst, B., Leumann, C., Eds.;
VCH: Weinheim, 1995; Vol. 7, pp 1–178; (b) Matt, T.;
Seebach, D. Helv. Chim. Acta 1998, 81, 1845–1895; (c)
Scott, W. L.; Delgado, F.; Lobb, K.; Pottorf, R. S.;
OÕDonnell, M. J. Tetrahedron Lett. 2001, 42, 2073–2076;
(d) Maier, S.; Kazmaier, U. Eur. J. Org. Chem. 2000,
1241–1251, and references cited therein.
3. (a) Easton, C. J. Chem. Rev. 1997, 97, 53–82; (b) Croft, A.
K.; Easton, C. J.; Radom, L. J. Am. Chem. Soc. 2003, 125,
4119–4124.
4. In addition, N-terminal protecting groups including the
Boc, Cbz and Ts groups proved to be incompatible with
the bromination step (Ref. 1b).
10. Glenn, M. P.; Kelso, M. J.; Tyndall, J. D. A.; Fairlie, D. P.
J. Am. Chem. Soc. 2003, 125, 640–641.
11. Data for compound 14(major diastereomer ). 1H NMR
(CDCl3, 400MHz) (major diastereomer) d (ppm) 8.01 (d,
1H, J = 10.4Hz), 7.30–7.12 (m, 10H), 6.40 (br s, 1H), 6.16
(br s, 1H), 4.97 (dt, 1H, J = 5.6, 10.0Hz), 4.67 (d, 1H,
J = 6.8Hz), 4.19 (d, 1H, J = 9.6Hz), 4.11 (br s, 1H), 3.95
(br s, 1H), 3.89 (dt, 1H, J = 3.6, 9.6Hz), 3.18 (t, 1H,
J = 9.6Hz), 3.15 (t, 1H, J = 10.8Hz), 2.99 (t, 1H,
J = 12.8Hz), 2.89 (dd, 1H, J=5.2, 12.8Hz), 2.80 (dd, 1H,
J = 6.0, 13.6Hz), 2.78 (quint, 1H, J = 9.2Hz), 2.41 (dd,
1H, J = 4.4, 14.4Hz), 2.36–2.32 (m, 1H), 2.06 (sextet, 1H,
J = 9.6Hz), 1.80–1.25 (m, 11H) (the OH signal is missing).
13C NMR (CDCl3, 125MHz) d (ppm) 172.6, 172.4, 171.2,
170.2, 138.2, 136.4, 129.4 (2C), 129.3 (2C), 128.9 (2C),
128.8 (2C), 127.3, 127.0, 72.5, 58.2, 57.3, 53.1, 52.8, 47.1,
40.1, 39.7, 36.8, 35.8, 34.3, 25.7, 25.5, 24.8, 22.3, 21.8. ES-
HRMS C32H40N4O5 [M + Na+]; calculated: 583.2896
found: 583.2893.
5. (a) Schuemann, S.; Zeitler, K.; Ja¨ger, M.; Polborn, K.;
Steglich, W. Tetrahedron 2000, 56, 4187–4195; (b) Paulitz,
C.; Steglich, W. J. Org. Chem. 1997, 62, 8474–
8478; (c) Bogensta¨tter, M.; Steglich, W. Tetrahedron