Organic Letters
Letter
Compounds as BACE Inhibitors, Compositions, and their Use. PCT
Int. Appl., WO 2011/044181 A1, PCT/US2010/051553, 2011.
(11) (a) Kennedy, M. E.; Stamford, A. W.; Chen, X.; Cox, K.;
Cumming, J. N.; Dockendorf, M. F.; Egan, M.; Ereshefsky, L.;
Hodgson, R. A.; Hyde, L. A.; Jhee, S.; Kleijn, H. J.; Kuvelkar, R.; Li,
W.; Mattson, B. A.; Mei, H.; Palcza, J.; Scott, J. D.; Tanen, M.; Troyer,
M. D.; Tseng, J. L.; Stone, J. A.; Parker, E. M.; Forman, M. S. The
BACE1 inhibitor verubecestat (MK-8931) reduced CNS β-amyloid in
animal models and in Alzheimer’s disease patients. Sci. Transl. Med.
2016, 8, 363ra150. (b) Scott, J. D.; Li, S. W.; Brunskill, A. P. J.; Chen,
X.; Cox, K.; Cumming, J. N.; Forman, M.; Gilbert, E. J.; Hodgson, R.
A.; Hyde, L. A.; Jiang, Q.; Iserloh, U.; Kazakevich, I.; Kuvelkar, R.;
Mei, H.; Meredith, J.; Misiaszek, J.; Orth, P.; Rossiter, L. M.; Slater,
M.; Stone, J.; Strickland, C. O.; Voigt, J. H.; Wang, G.; Wang, H.; Wu,
Y.; Greenlee, W. J.; Parker, E. M.; Kennedy, M. E.; Stamford, A. W.
Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative
Verubecestat (MK-8931) − A β-Site Amyloid Precursor Protein
Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s
Disease. J. Med. Chem. 2016, 59, 10435.
(12) (a) Thaisrivongs, D. A.; Morris, W. J.; Tan, L.; Song, Z. J.;
Lyons, T. W.; Waldman, J. H.; Naber, J. R.; Chen, W.; Chen, L.;
Zhang, B.; Yang, J. A Next Generation Synthesis of BACE1 Inhibitor
Verubecestat (MK-8931). Org. Lett. 2018, 20, 1568. For the first
generation synthesis, see: (b) Thaisrivongs, D. A.; Miller, S. P.;
Molinaro, C.; Chen, Q.; Song, Z. J.; Tan, L.; Chen, L.; Chen, W.;
Lekhal, A.; Pulicare, S. K.; Xu, Y. Synthesis of Verubecestat, a BACE1
Inhibitor for the Treatment of Alzheimer’s Disease. Org. Lett. 2016,
18, 5780.
(13) (a) Luttrell, W. E. Cyanogen bromide. J. Chem. Health Saf.
2009, 16, 29. U.S. National Library of Medicine, Hazardous
therein.
(14) (a) Zhu, C.; Chen, C. A Simple Method for the Electrophilic
Cyanation of Secondary Amines. Org. Lett. 2014, 16, 247. (b) Glotz,
G.; Lebl, R.; Dallinger, D.; Kappe, C. O. Integration of Bromine and
Cyanogen Bromide Generators for the Continuous-Flow Synthesis of
Cyclic Guanidines. Angew. Chem., Int. Ed. 2017, 56, 13786.
(15) (a) Kim, J.-J.; Kweon, D.-H.; Cho, S.-D.; Kim, H.-K.; Jung, E.-
Y.; Lee, S.-G.; Falck, J. R.; Yoon, Y.-J. 2-Cyanopyridazin-3(2H)-ones:
effective and chemoselective electrophilic cyanating agent. Tetrahe-
cyanoimide complexes prepared by NCN group transfer. Chem.
Commun. 2001, 125. See also ref 6a.
(20) For selected reviews on electrophilic amination, see: (a) Erdik,
E.; Ay, M. Electrophilic Amination of Carbanions. Chem. Rev. 1989,
89, 1947. (b) Starkov, P.; Jamison, T. F.; Marek, I. Electrophilic
Amination: The Case of Nitrenoids. Chem. - Eur. J. 2015, 21, 5278.
(21) Tishkov, A. A.; Mayr, H. Ambident Reactivity of the Cyanide
Ion: A Failure of the HSAB Principle. Angew. Chem., Int. Ed. 2005, 44,
142.
(23) Solubility: 0.0005 g/100 cm3 H2O at 20 °C: U.S. National
Library of Medicine, Hazardous Substances Data Bank (HSDB): Zinc
(24) (a) Prakash, G. K. S.; Mathew, T.; Hoole, D.; Esteves, P. M.;
Wang, Q.; Rasul, G.; Olah, G. A. N-Halosuccinimide/BF3−H2O,
Efficient Electrophilic Halogenating Systems for Aromatics. J. Am.
Chem. Soc. 2004, 126, 15770. (b) Bartoli, S.; Cipollone, A.; Squarcia,
A.; Madami, A.; Fattori, D. Electrophilic Bromination of meta-
Substituted Anilines with N-Bromosuccinimide: Regioselectivity and
Solvent Effect. Synthesis 2009, 2009, 1305.
(25) The corresponding N-chloroamine of 2-phenylpyrrolidine was
found to be unstable under the reaction conditions.
(26) N-(4-methoxyphenyl)cyanamide could not be isolated in useful
yields, as 4-methoxyaniline undergoes other side reactions.
(27) Monosubstituted cyanamides are known to undergo cyclo-
trimerization to form 1,3,5-triazines; see ref 6a. Triazine side products
were not observed in reaction mixtures forming products 19 and 20.
(28) N-Benzyl-4-trifluoroaniline remained unreacted using NCS/
Zn(CN)2. The use of NBS/Zn(CN)2 resulted in bromination of the
aniline ring instead of N-cyanation.
(29) The formation of 2-aminooxazolines and 2-aminooxazoles from
amino alcohols is also reported using BrCN. However, other recently
reported cyanation procedures do not promote this cyclization; see
for example ref 14b.
(30) The assay yield of 2 was determined by 1H NMR of the crude
reaction mixture using CH2Br2 as the internal standard.
(31) The use of EtOAc instead of acetonitrile for the cyanation of 1
potentially leads to increased stability of the 1-Br intermediate. For
further details of the solvent and temperature optimization, see Table
(32) The oxidation of amine 4 with NCS is instantaneous.
Therefore, the reaction profile represents the rate for the cyanation
of the corresponding N-chloroamine 4-Cl.
(33) Calvo, P.; Crugeiras, J.; Ríos, A.; Ríos, M. A. Nucleophilic
Substitution reactions of N-Chloroamines: Evidence for a Change in
Mechanism with Increase Nucleophile Reactivity. J. Org. Chem. 2007,
72, 3171.
(34) Chlorine transfer between amines was not observed, but has
been reported for benzylamine; see: Calvo, P.; Crugeiras, J.; Ríos, A.
Kinetic and Thermodynamic Barriers to Chlorine Transfer between
Amines in Aqueous Solution. J. Org. Chem. 2009, 74, 5381.
(35) Zn(CN)2 is a toxic chemical. For more information, see: Zinc
cyanide, MSDS No. 256498 [Online]; Sigma-Aldrich: Saint Louis,
also ref 23.
dron 2005, 61, 5889. (b) Talavera, G.; Pena, J.; Alcarazo, M.
̃
Dihalo(imidazolium)sulfuranes: A Versatile Platform for the Synthesis
of New Electrophilic Group-Transfer Reagents. J. Am. Chem. Soc.
̈
2015, 137, 8704. (c) Ayres, J. N.; Ashford, M. W.; Stockl, Y.;
Prudhomme, V.; Ling, K. B.; Platts, J. A.; Morrill, L. C.
Deoxycyanamidation of Alcohols with N-Cyano-N-phenyl-p-methyl-
benzenesulfonamide (NCTS). Org. Lett. 2017, 19, 3835.
(16) Ayres, J. N.; Ling, K. B.; Morrill, L. C. N-Cyanation of
Secondary Amines Using Trichloroacetonitrile. Org. Lett. 2016, 18,
5528.
(17) (a) Bakunov, S. A.; Rukavishnikov, A. V.; Tkachev, A. V.
Modification of the Tiemann Rearrangement: One-Pot Synthesis of
N,N-Disubstituted Cyanamides from Amidoximes. Synthesis 2000,
2000, 1148. (b) Lin, C.-C.; Hsieh, T.-H.; Liao, P.-Y.; Liao, Z.-Y.;
Chang, C.-W.; Shih, Y.-C.; Yeh, W.-H.; Chien, T.-C. Practical
Synthesis of N-Substituted Cyanamides via Tiemann Rearrangement
of Amidoximes. Org. Lett. 2014, 16, 892.
(18) (a) Teng, F.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. A copper-
mediated oxidative N-cyanation reaction. Chem. Commun. 2014, 50,
8412. (b) Teng, F.; Yu, J.-T.; Zhou, Z.; Chu, H.; Cheng, J. Copper-
Catalyzed N-Cyanation of Sulfoximines by AIBN. J. Org. Chem. 2015,
80, 2822.
(19) (a) Lazukina, L. A.; Khaskin, G. I.; Kukhar, V. P. Reactions of
trimethylsilyl cyanide with halogens and N-halogen compounds. Ukr.
Khim. Zh. (Russ. Ed.) 1979, 45, 471. (b) Mindiola, D. J.; Tsai, Y.-C.;
Hara, R.; Chen, Q.; Meyer, K.; Cummins, C. C. Bimetallic μ-
E
Org. Lett. XXXX, XXX, XXX−XXX