Synthesis of (+)-Manoalide via a Copper(I)-Mediated 1,2-Metalate
Rearrangement
Agne`s Pommier,‡ Viatcheslav Stepanenko,† Krzysztof Jarowicki,† and Philip J. Kocienski*,†
Department of Chemistry, Glasgow University, Glasgow G12 8QQ, Scotland, and Department of
Chemistry, Leeds University, Leeds, LS2 9JT, UK
Received December 5, 2002
An enantiospecific synthesis of the phospholipase A2 inhibitor (+)-(4R)-manoalide is reported in
which all 25 carbons of the sesterterpenoid skeleton are constructed from 3-furaldehyde, trimethyl-
alane, oxirane, CO, â-ionone, and propargyl bromide. The overall yield for the longest linear sequence
(12 steps) is 12%. Key steps include (a) a zirconium-catalyzed carboalumination reaction to construct
the C10-C11 trisubstituted alkene, (b) a Cu(I)-mediated 1,2-metalate rearrangement to construct
the C6-C7 trisubstituted alkene, (c) a Sharpless kinetic resolution to secure the (4R)-stereochem-
istry, (d) generation of a 5-stannyl-2,3-dihydrofuran by Mo-catalyzed cycloisomerization of a
homopropargylic alcohol, and (e) construction of the hydroxyfuranone ring by photooxidation of a
silylfuran.
Introduction
Manoalide is a potent and irreversible inhibitor of
phospholipase A2 (PLA2), the hydrolytic enzyme that
catalyses arachidonic acid release from membrane-bound
phosphoglycerides leading to the formation of pro-inflam-
matory mediators such as the leukotrienes and prostag-
landins.15,16 Moreover, it also reduces the expression of
COX-2.17 Current opinion is that irreversible binding of
manoalide to PLA2 is the consequence of Schiff base
formation between the aldehyde tautomer of the hy-
droxyfuranone ring of two manoalide molecules and two
remote lysine residues on the interfacial recognition
surface of the enzyme. Neither lysine is associated with
the active site of the enzyme; hence some residual
catalytic activity of the doubly bound enzyme is ob-
served.18 However, the PLA2 inhibition by cacospongiono-
lide E (3) suggests that Schiff base formation with the
aldehyde tautomer derived from the hydroxypyran ring
(C24) is not essential for biological activity.19 Another
dominant molecular feature that contributes to the
potency and efficacy of manoalide is the presence of a
large hydrophobic chain. Sodano and co-workers have
In 1980 de Silva and Scheuer reported the isolation
and structure determination of manoalide (1), a sester-
terpenoid metabolite from the Pacific sponge Luffariella
variabilis.1 Owing to the presence of two hemiacetal
moieties at C24 and C25, manoalide is a mixture of
diastereoisomers that undergo easy ring-chain tautom-
erism to the dialdehyde 2. The absolute stereochemistry
of the single remaining nonfluxional stereogenic center
at C4 was ascertained by correlation with a synthetic
derivative.2,3 The first total synthesis of racemic manoalide
was reported in 1985 by Katsumura and co-workers,4 and
this was followed by six syntheses of the racemate5-8
(including our own contribution9). However, the first
enantiospecific synthesis of (+)-(4R)-manoalide evaded
conquest until the concise asymmetric aldol approach of
the Sodano group in 1999.10 Syntheses of various pyra-
nofuranone fragments have also been described.11-14
† Leeds University.
‡ Glasgow University. Current address: AstraZeneca Pharmaceu-
ticals, Bakewell Road, Loughborough, LE11 0RH, UK.
(1) de Silva, E. D.; Scheuer, P. J. Tetrahedron Lett. 1980, 21, 1611-
1614.
(11) Katsumura, S.; Inagaki, Y.; Tsujino, K.; Han, Q. Chem. Lett.
1993, 351-352.
(2) Amoo, V. E.; De Bernardo, S.; Weigele, M. Tetrahedron Lett.
1988, 29, 2401-2404.
(3) Kobayashi, M.; Okamoto, T.; Hayashi, K.; Yokoyama, N.; Sasaki,
T.; Kitagawa, I. Chem. Pharm. Bull. 1994, 42, 265-270.
(4) Katsumura, S.; Fujiwara, S.; Isoe, S. Tetrahedron Lett. 1985, 26,
5827-5830.
(12) Lattmann, E.; Coombs, J.; Hoffmann, H. M. R. Synthesis 1996,
171-177.
(13) Soriente, A.; De Rosa, M.; Scettri, A.; Sodano, G. Tetrahedron
Lett. 1996, 37, 8007-8010.
(14) De Rosa, M.; Soriente, A.; Sodano, G.; Scettri, A. Tetrahedron
2000, 56, 2095-2102.
(5) Garst, M. E.; Tallman, E. A.; Bonfiglio, J. N.; Harcourt, D.;
Ljungwe, E. B.; Tran, A. Tetrahedron Lett. 1986, 27, 4533-4536.
(6) Katsumura, S.; Fujiwara, S.; Isoe, S. Tetrahedron Lett. 1988, 29,
1173-1176.
(15) Reynolds, L. J.; Morgan, B. P.; Hite, G. A.; Mihelich, E. D.;
Dennis, E. A. J. Am. Chem. Soc. 1988, 110, 5172-5177.
(16) Glaser, K. B.; de Carvalho, M. S.; Jacobs, R. S.; Kernan, M. R.;
Faulkner, D. J. Mol. Pharmacol. 1989, 36, 782-788.
(17) Glaser, K. B.; Lock, Y. W. Biochem. Pharmacol. 1995, 50, 913-
922.
(7) Bury, P.; Hareau-Vittini, G.; Kocienski, P.; Dhanak, D. Tetra-
hedron 1994, 50, 8793-8808.
(8) Coombs, J.; Lattmann, E.; Hoffmann, H. M. R. Synthesis 1998,
1367-1371.
(18) Bianco, I. D.; Kelley, M. J.; Crowl, R. M.; Dennis, E. A. Biochim.
Biophys. Acta 1995, 1250, 197-203.
(19) De Rosa, M.; Giordano, S.; Scettri, A.; Sodano, G.; Soriente, A.;
Pastor, P. G.; Alcaraz, M. J.; Paya´, M. J. Med. Chem. 1998, 41, 3232-
3238.
(9) Pommier, A.; Kocienski, P. J. J. Chem. Soc., Chem. Commun.
1997, 1139-1140.
(10) Soriente, A.; De Rosa, M.; Apicella, A.; Scettri, A.; Sodano, G.
Tetrahedron: Asymmetry 1999, 10, 4481-4484.
10.1021/jo0268097 CCC: $25.00 © 2003 American Chemical Society
Published on Web 04/15/2003
4008
J. Org. Chem. 2003, 68, 4008-4013