cycle with various substitution patterns.11,12 Many established
approaches for the synthesis of pyrroles are based on the
venerable Paal-Knorr13-16 and Hantzsch17 reactions, which
were developed in the late 19th century. Even with the
substantial work in this area spanning the last hundred years,
new reports that provide efficient and versatile access to pyrroles
continue to appear, underscoring the importance of this hetero-
cycle in various areas of science.18-20 For example, contem-
porary strategies for the construction of pyrroles include
transition-metal-mediatedandmulticomponentcouplingroutes.16,21-25
The symmetric 3,4-disubstitued pyrrole core has special interest
since the combination of these monomers with an aldehyde
results in highly substituted porphyrins. These resulting 4-fold
symmetric macrocycles are key molecules that are the basis for
a large variety of synthetic and physiochemical studies.6,26,27
Over the last three decades, two compounds have emerged as
useful model systems in the investigations of general properties
ofmetalloporphyrinatederivatives: octaethylporphyrin(H2OEP)28-33
and tetraphenylporphyrin (H2TPP).34 For example, iron com-
plexes of octaethylporphyrin have received significant attention
due to its homology to heme b of the heme proteins.26,35,36
Although H2OEP is a more appropriate model compound due
to its substitution pattern and homology to the heme cofactor,
Microwave-Assisted Piloty-Robinson Synthesis of
3,4-Disubstituted Pyrroles
Benjamin C. Milgram,† Katrine Eskildsen,‡
Steven M. Richter,§ W. Robert Scheidt,‡ and
Karl A. Scheidt*,†
Department of Chemistry, Northwestern UniVersity, 2145
Sheridan Road, EVanston, Illinois 60208, Department of
Chemistry and Biochemistry, UniVersity of Notre Dame, Notre
Dame, Indiana 46556, and Abbott Laboratories, Process Safety
Laboratory, 1401 Sheridan Road, North Chicago, Illinois 60064
ReceiVed February 27, 2007
(10) Merz, A.; Schwarz, R.; Schropp, R. AdV. Mater. 1992, 4, 409-
411.
(11) Jones, R. A., Ed. Pyrroles. Part I: The Synthesis and the Physical
and Chemical Aspects of the Pyrrole Ring; Wiley: New York, 1990; Vol.
48, Part 1.
(12) Jones, R. A., Ed. Pyrroles. Part 2. The Synthesis, ReactiVity, and
Physical Properties of Substituted Pyrroles; Wiley: New York, 1992; Vol.
48, Part 2.
(13) Paal, C. Chem. Ber. 1885, 367-371.
(14) Knorr, L. Chem. Ber. 1885, 18, 299-311.
(15) Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.;
Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924-6931.
(16) Braun, R. U.; Zeitler, K.; Muller, T. J. J. Org. Lett. 2001, 3, 3297-
3300.
The synthesis of N-acyl 3,4-disubstituted pyrroles can be
accomplished directly from hydrazine and an aldehyde via
a Piloty-Robinson pyrrole synthesis. The use of microwave
radiation for the cyclization and pyrrole formation greatly
reduces the time necessary for this process and facilitates
moderate to good yields from hydrazine for the correspond-
ing 3,4-disubstituted products (5-12). By simple hydrolysis,
the free N-H pyrroles can be accessed after the Piloty-
Robinson reaction and then used directly in the synthesis of
octaethylporphyrin (H2OEP, 14) and octaethyltetraphenylpor-
phyrin (H2OETPP, 15).
(17) Hantzsch, A. Chem. Ber. 1890, 23, 1474-1483.
(18) Tang, J. S.; Verkade, J. G. J. Org. Chem. 1994, 59, 7793-7802.
(19) Lash, T. D.; Bellettini, J. R.; Bastian, J. A.; Couch, K. B. Synthesis
1994, 170-172.
Pyrroles with substituents at C3 and C4 are important
compounds for the synthesis of pharmaceuticals, natural
products,1-5 and porphyrins.6-10 Consequently, there are numer-
ous general methods to access this important aromatic hetero-
(20) Yu, M.; Pagenkopf, B. L. Org. Lett. 2003, 5, 5099-5101.
(21) Buchwald, S. L.; Wannamaker, M. W.; Watson, B. T. J. Am. Chem.
Soc. 1989, 111, 776-777.
(22) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc.
2001, 123, 2074-2075.
(23) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465-2468.
(24) Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468-
469.
* To whom correspondence should be addressed. Tel: 847-491-6659.
† Northwestern University.
‡ University of Notre Dame.
(25) Agarwal, S.; Knolker, H. J. Org. Biomol. Chem. 2004, 2, 3060-
3062.
§ Abbott Laboratories.
(1) LeQuesne, P. W.; Dong, Y.; Blythe, T. A. In Alkaloids: Chemical
and Biological PerspectiVes; Pelletier, S. W., Ed.; Elsevier: Amsterdam,
The Netherlands, 1999; Vol. 13.
(2) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435-446.
(3) Sanchez, C.; Zhu, L. L.; Brana, A. F.; Salas, A. P.; Rohr, J.; Mendez,
C.; Salas, J. A. Proc. Nat. Acad. Sci. U.S.A. 2005, 102, 461-466.
(4) Nishizawa, T.; Gruschow, S.; Jayamaha, D. H. E.; Nishizawa-Harada,
C.; Sherman, D. H. J. Am. Chem. Soc. 2006, 128, 724-725.
(5) Hinze, C.; Kreipl, A.; Terpin, A.; Steglich, W. Synthesis 2007, 608-
612.
(26) Buchler, J. W. Angew. Chem., Int. Ed. 1978, 17, 407-423.
(27) Scheidt, W. R.; Reed, C. A. Chem. ReV. 1981, 81, 543-555.
(28) Eisner, U.; Lichtarowicz, A.; Linstead, R. P. J. Chem. Soc. 1957,
733-739.
(29) Inhoffen, H. H.; Fuhrhop, J. H.; Voigt, H.; Brockman, H. Liebigs
Ann. Chem. 1966, 695, 133-139.
(30) Whitlock, H. W.; Hanauer, R. J. Org. Chem. 1968, 33, 2169-2171.
(31) Paine, J. B.; Kirshner, W. B.; Moskowitz, D. W.; Dolphin, D. J.
Org. Chem. 1976, 41, 3857-3860.
(32) Paine, J. B.; Dolphin, D. J. Org. Chem. 1988, 53, 2787-2795.
(33) Sessler, J. L.; Mozaffari, A.; Johnson, M.; Fischer, J.; Winterfeldt,
E. Org. Synth. 1992, 70, 68-74.
(6) Kadish, K. M., Smith, K. M., Guilard, R., Eds. The Porphyrin
Handbook; Academic Press: San Diego, CA, 2000.
(7) Smith, K. M. In ComprehensiVe Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 4, p 377.
(8) Ono, N.; Kawamura, H.; Bougauchi, M.; Maruyama, K. Tetrahedron
1990, 46, 7483-7496.
(34) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmach, J.; Assour,
J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476.
(35) Ellison, M. K.; Schulz, C. E.; Scheidt, W. R. J. Am. Chem. Soc.
2002, 124, 13833-13841.
(36) Hu, C. J.; Roth, A.; Ellison, M. K.; An, J.; Ellis, C. M.; Schulz, C.
E.; Scheidt, W. R. J. Am. Chem. Soc. 2005, 127, 5675-5688.
(9) Ono, N.; Miyagawa, H.; Ueta, T.; Ogawa, T.; Tani, H. J. Chem. Soc.,
Perkin Trans. 1 1998, 1595-1601.
10.1021/jo070389+ CCC: $37.00 © 2007 American Chemical Society
Published on Web 04/14/2007
J. Org. Chem. 2007, 72, 3941-3944
3941