Organic Letters
Letter
42, 4408. (c) Wilson, R. M.; Dong, S.; Wang, P.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2013, 52, 7646.
(2) (a) Srivastava, A.; Varghese, B.; Loganathan, D. Chem. - Eur. J.
2013, 19, 17720. (b) Suthagar, K.; Polson, M. J.; Fairbanks, A. J. Org.
Biomol. Chem. 2015, 13, 6573.
(3) (a) Colinas, P. A.; Bravo, R. D.; Vullo, D.; Scozzafava, A.;
Supuran, C. T. Bioorg. Med. Chem. Lett. 2007, 17, 5086. (b) Wilkinson,
B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.; Vullo, D.;
Supuran, C. T.; Poulsen, S. A. J. Med. Chem. 2007, 50, 1651.
moiety B. Subsequently, nucleophilic addition by soft
nucleophile sulfonamindes11d,18 generates the β-N-glycoside
D with a net retention of stereochemistry.
In summary, we have successfully developed a highly
efficient approach for the catalytic β-stereoselective synthesis
of 2,3-unsaturated glycosyl sulfonamides from readily available
3,4-O-carbonate glycals and sulfonamides. This reaction was
based on a palladium-catalyzed decarboxylative allylation.
Various N-nucleophiles were examined during the study and
afforded the corresponding 2,3-unsaturated β-N-glycosides in
excellent yields and exclusive regioselectivity and stereo-
selectivity (β/α > 30:1). In addition, this method employs
mild reaction conditions, is amenable to gram-scale synthesis,
and shows excellent functional group compatibility. Moreover,
further functionalization of sulfonamidoglycosides by glyco-
sylation, dihydroxylation, and nucleophilic addition has been
successfully applied. Overall, our reported Pd-catalyzed,
stereoselective N-glycosylation protocol provides a powerful
tool for the access of glycosyl sulfonamides in practical quality
and quantities that could enable biological evaluations of this
class of substrates. Studies toward the synthesis of complex N-
glycosides using our approach will be reported in due course.
́
(c) Winum, J.-Y.; Thiry, A.; El Cheikh, K.; Dogne, J. M.; Montero, J.
L.; Vullo, D.; Scozzafava, A.; Masereel, B.; Supuran, C. T. Bioorg. Med.
Chem. Lett. 2007, 17, 2685.
(4) Mitsuya, H.; Yarchoan, R.; Broder, S. Science 1990, 249, 1533.
(5) (a) Winum, J. Y.; Montero, J. L.; Scozzafava, A.; Supuran, C. T.
Mini-Rev. Med. Chem. 2006, 6, 921. (b) Winum, J. Y.; Poulsen, S.-A.;
Supuran, C. T. Med. Res. Rev. 2009, 29, 419.
(6) For reviews of Ferrier glycosylation, see: (a) Ferrier, R. J. Top.
́
Curr. Chem. 2001, 215, 153. (b) Gomez, A. M.; Lobo, F.; Uriel, C.;
́
Lopez, J. C. Eur. J. Org. Chem. 2013, 2013, 7221.
(7) (a) Chandrasekhar, S.; Reddy, C. R.; Chandrashekar, G.
Tetrahedron Lett. 2004, 45, 6481. (b) Colinas, P. A.; Bravo, R. D.
́
Carbohydr. Res. 2007, 342, 2297. (c) Tempera, C. A.; Colinas, P. A.;
Bravo, R. D. Tetrahedron Lett. 2010, 51, 5372. (d) Ding, F.; William,
R.; Gorityala, B. K.; Ma, J.; Wang, S.; Liu, X.-W. Tetrahedron Lett.
2010, 51, 3146. (e) Ding, J.-X.; William, R.; Liu, X.-W. J. Org. Chem.
2013, 78, 1293. (f) Reddy, T. R.; Chittela, S.; Kashyap, S. Tetrahedron
2014, 70, 9224. (g) Begum, Z.; Kishore, V.; Veerabhadra Reddy, V.;
Subba Reddy, B. V. Tetrahedron Lett. 2014, 55, 6048. (h) Reddy, T.
R.; Battina, S. K.; Kashyap, S. J. Carbohydr. Chem. 2015, 34, 133.
(i) Nardi, M.; Cano, N. H.; De Nino, A.; Di Gioia, M. L.; Maiuolo, L.;
Oliverio, M.; Santiago, A.; Sorrentino, D.; Procopio, A. Tetrahedron
Lett. 2017, 58, 1721.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and analysis data for all new
(8) Colinas, P. A.; Bravo, R. D. Org. Lett. 2003, 5, 4509.
(9) For selected examples of palladium-catalyzed O-glycosylation,
see: (a) Babu, R. S.; O’Doherty, G. A. J. Am. Chem. Soc. 2003, 125,
12406. (b) Babu, R. S.; Zhou, M.; O’Doherty, G. A. J. Am. Chem. Soc.
2004, 126, 3428. (c) Comely, A. C.; Eelkema, R.; Minnaard, A. J.;
Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 8714. (d) Sherry, B. D.;
Loy, R. N.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4510. (e) Kim,
H.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 1336. (f) Schuff, B.
P.; Mercer, G. J.; Nguyen, H. M. Org. Lett. 2007, 9, 3173. (g) Zeng, J.;
Ma, J.; Xiang, S.; Cai, S.; Liu, X.-W. Angew. Chem., Int. Ed. 2013, 52,
5134. (h) Xiang, S.; Hoang, K. L. M.; He, J.; Tan, Y.-J.; Liu, X.-W.
Angew. Chem., Int. Ed. 2015, 54, 604. (i) Yao, H.; Zhang, S.-S.; Leng,
W.-L.; Leow, M.-L.; Xiang, S.-H.; He, J.-X.; Liao, H.-Z.; Hoang, K. L.
M.; Liu, X.-W. ACS Catal. 2017, 7, 5456. (j) Sau, A.; Williams, R.;
Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Angew.
Chem., Int. Ed. 2017, 56, 3640. (k) Sau, A.; Galan, M. C. Org. Lett.
2017, 19, 2857.
Accession Codes
CCDC 1826601 and CCDC 1833027 contain the supple-
mentary crystallographic data for this paper. These data can be
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, U.K.; fax: +44 1223
336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) For recent reviews, see: (a) Ress, D. K.; Linhardt, R. Curr. Org.
Synth. 2004, 1, 31. (b) Crich, D. Acc. Chem. Res. 2010, 43, 1144.
(c) McKay, M. J.; Nguyen, H. M. ACS Catal. 2012, 2, 1563. (d) Yu,
B.; Sun, J.; Yang, X. Acc. Chem. Res. 2012, 45, 1227. (e) Li, X. H.; Zhu,
J. L. J. Carbohydr. Chem. 2012, 31, 284. (f) Li, X. H.; Zhu, J. L. Eur. J.
Org. Chem. 2016, 2016, 4724. (g) Yu, B. Acc. Chem. Res. 2018, 51,
507. (h) Leng, W.-L.; Yao, H.; He, J.-X.; Liu, X.-W. Acc. Chem. Res.
2018, 51, 628.
(11) (a) Tsuji, J. Pure Appl. Chem. 1982, 54, 197. (b) Trost, B. M.;
Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (c) Trost, B. M.;
Crawley, M. L. Chem. Rev. 2003, 103, 2921. (d) Trost, B. M.;
Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092. (e) Trost, B.
M. Tetrahedron 2015, 71, 5708.
(12) For palladium-catalyzed N-glycosylation, see: (a) Bolitt, V.;
Chaguir, B.; Sinou, D. Tetrahedron Lett. 1992, 33, 2481. (b) Trost, B.
M.; Krische, M. J.; Berl, V.; Grenzer, E. M. Org. Lett. 2002, 4, 2005.
(c) Guppi, S. R.; Zhou, M.-Q.; O’Doherty, G. A. Org. Lett. 2006, 8,
293. (d) Yang, J.; Mercer, G. J.; Nguyen, H. M. Org. Lett. 2007, 9,
4231. (e) Mercer, G. J.; Yang, J.; McKay, M. J.; Nguyen, H. M. J. Am.
Chem. Soc. 2008, 130, 11210. (f) Zhang, Q.; Sun, J.; Zhu, Y.; Zhang,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support for this work was provided by the National Science
Foundation (Nos. CHE 1710174 and MRI 1337594), and the
University at Albany−SUNY to Q.Z. Thanks are extended to
Prof. Alexander Shekhtman (University at Albany−SUNY) for
NMR structure elucidation. We thank Dr. Zheng Wei
(University at Albany−SUNY) for single-crystal structure
determination and analysis. We thank Prof. David Crich
(Wayne State University) for helpful suggestions.
REFERENCES
■
(1) (a) Gamblin, D. P.; Scanlan, E. M.; Davis, B. G. Chem. Rev.
2009, 109, 131. (b) Unverzagt, C.; Kajihara, Y. Chem. Soc. Rev. 2013,
D
Org. Lett. XXXX, XXX, XXX−XXX