and Technological Special Project (2009ZX09103-081) is also
acknowledged.
Notes and references
1 (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (b) J. J. Li, T. S. Mei and
J. Q. Yu, Angew. Chem., Int. Ed., 2008, 47, 6452; (c) D. H. Wang,
M. Was, R. Giri and J. Q. Yu, J. Am. Chem. Soc., 2008, 130, 7190;
(d) O. Basle and C.-J. Li, Org. Lett., 2008, 10, 3661.
2 Modern Amination Reactions, ed. A. Ricci, Wiley-VCH, Weinheim,
Germany, 2000.
3 (a) K. Godula and D. Sames, Science, 2006, 312, 67; (b) R. G. Bergman,
Nature, 2007, 446, 391; (c) H. Chen, S. Schlecht, T. C. Semple and
J. F. Hartwig, Science, 2000, 287, 1995; (d) J.-Y. Cho, M. K. Tse,
D. Holmes, R. E. Maleczka Jr. and M. R. Smith III, Science, 2002, 295,
305; (e) J. A. Labinger and J. E. Bercaw, Nature, 2002, 417, 507;
(f) Z. Li, D. S. Bohle and C.-J. Li, Proc. Natl. Acad. Sci. U. S. A., 2006,
103, 8928; (g) Z. Li and C.-J. Li, Org. Lett., 2004, 6, 4997; (h) Z. Li and
C.-J. Li, J. Am. Chem. Soc., 2004, 126, 11810; (i) Z. Li and C.-J. Li,
J. Am. Chem. Soc., 2005, 127, 3672.
4 For some recent reviews of C–H bond amidations, see: (a) F. Collet,
R. H. Dodd and P. Dauban, Chem. Commun., 2009, 5061;
(b) H. M. L. Davies and M. S. Long, Angew. Chem., Int. Ed., 2005, 44,
3518; (c) J. Du Bois, Chemtracts, 2005, 18, 1; (d) C. G. Espino and
J. Du Bois, in Modern Rhodium-Catalyzed Organic Reactions, ed.
P. A. Evans, Wiley-VCH, Weinheim, 2005, p. 379; (e) J. A. Halfen, Curr.
Org. Chem., 2005, 9, 657.
Scheme 4 Plausible mechanism for the gold catalyzed amidation of
benzylic bonds (L = 2,2′-bipyridine).
amidation of benzylic sp3C–H bonds is shown in Scheme 4.
Initially, AuI species is generated in situ from the reduction of
AuIII by the solvent or substrates.18b,20 Reaction of carboxamide
or sulfonylamide with NBS yields N-bromocarboxamide or
N-bromosulfonamide 7. Exchange of AuI species with a proton
in 7 gives intermediate complex 8. Isomerization of 8 gives Au–
nitrene complex 9. 9 combines with the sp3 C–H bond of the
benzylic substrate to form the transition state 10, and release of
gold species in 10 gives the target product 4.
5 Representative
intramolecular
metal–nitrene-type
amidations:
(a) S. M. Paradine and M. C. White, J. Am. Chem. Soc., 2012, 134,
2036; (b) M. Ichinose, H. Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida
and T. Katsuki, Angew. Chem., Int. Ed., 2011, 50, 9884; (c) H. J. Lu,
H. L. Jiang, L. Wojtas and X. P. Zhang, Angew. Chem., Int. Ed., 2010,
49, 10192; (d) E. Milczek, N. Boudet and S. Blakey, Angew. Chem.,
2008, 120, 6931; E. Milczek, N. Boudet and S. Blakey, Angew. Chem.,
Int. Ed., 2008, 47, 6825; (e) M. Kim, J. V. Mulcahy, C. G. Espino and
J. Du Bois, Org. Lett., 2006, 8, 1073; (f) H. Lebel, K. Huard and
S. Lectard, J. Am. Chem. Soc., 2005, 127, 14198; (g) J. Zhang,
P. W. H. Chan and C.-M. Che, Tetrahedron Lett., 2005, 46, 5403;
(h) Y. Cui and C. He, Angew. Chem., Int. Ed., 2004, 43, 4210;
(i) C. G. Espino, K. W. Fiori, M. Kim and J. Du Bois, J. Am. Chem. Soc.,
2004, 126, 15378; ( j) J.-L. Liang, S.-X. Yuan, J.-S. Huang and
C.-M. Che, J. Org. Chem., 2004, 69, 3610; (k) C. Fruit and P. Muller,
Helv. Chim. Acta, 2004, 87, 1607; (l) J.-L. Liang, S.-X. Yuan,
J.-S. Huang, W.-Y. Yu and C.-M. Che, Angew. Chem., Int. Ed., 2002, 41,
3465; (m) C. G. Espino, P. M. Wehn, J. Chow and J. Du Bois, J. Am.
Chem. Soc., 2001, 123, 6935; (n) C. G. Espino and J. Du Bois, Angew.
Chem., Int. Ed., 2001, 40, 598; (o) R. Breslow and S. H. Gellman, J. Am.
Chem. Soc., 1983, 105, 6728.
Conclusions
In conclusion, we have demonstrated the novel Au-catalyzed
amidation of benzylic C–H bonds via C–H activation. The reac-
tion proceeds with high efficiency to give the corresponding
amines which are extremely useful synthetic intermediates in the
construction of biologically important compounds. Research is
currently underway to elucidate the mechanism and to apply the
principle to other catalytic systems.
Experimental section
General procedure for amidation of benzylic sp3C–H bonds with
amides
6 Representative
intermolecular
metal–nitrene-type
amidations:
(a) A. Iglesias, R. Alvarez, A. R. de Lera and K. Muniz, Angew. Chem.,
Int. Ed., 2012, 51, 2225; (b) Z. K. Ni, Q. Zhang, T. Xiao, Y. Y. Zheng,
Y. Li, H. W. Zhang, J. P. Zhang and Q. Liu, Angew. Chem., Int. Ed.,
2012, 51, 1244; (c) Y. H. Ye, J. Zhang, G. Wang, S. Y. Chen and
X. Q. Yi, Tetrahedron, 2011, 67, 4649; (d) D. A. Powell and H. Fan,
J. Org. Chem., 2010, 75, 2726; (e) R. H. Fan, W. X. Li, D. M. Pu and
L. Zhang, Org. Lett., 2009, 11, 1425; (f) C. G. Liang, F. Collet,
F. Robert-Peillard, P. Muller, R. H. Dodd and P. Dauban, J. Am. Chem.
Soc., 2008, 130, 343; (g) Z. Wang, Y. M. Zhang, H. Fu, Y. Y. Jiang and
Y. F. Zhao, Org. Lett., 2008, 10, 1863; (h) Z. G. Li, D. A. Capretto,
R. Rahaman and C. He, Angew. Chem., Int. Ed., 2007, 46, 5184;
(i) M. R. Fructos, S. Trofimenko, M. M. Díaz-Requejo and P. J. Pérez,
J. Am. Chem. Soc., 2006, 128, 11784; ( j) H.-Y. Thu, W.-Y. Yu and
C.-M. Che, J. Am. Chem. Soc., 2006, 128, 9048; (k) S. K.-Y. Leung,
W.-M. Tsui, J.-S. Huang, C.-M. Che, J.-L. Liang and N. Zhu, J. Am.
Chem. Soc., 2005, 127, 16629; (l) M. Yamawaki, H. Tsutsui, S. Kitagaki,
M. Anada and S. Hashimoto, Tetrahedron Lett., 2002, 43, 9561;
(m) Y. Kohmura and T. Katsuki, Tetrahedron Lett., 2001, 42, 3339;
(n) J. Yang, R. Weinberg and R. Breslow, Chem. Commun., 2000, 531;
(o) S.-M. Au, J.-S. Huang, C.-M. Che and W.-Y. Yu, J. Org. Chem.,
2000, 65, 7858; (p) X.-Q. Yu, J.-S. Huang, X.-G. Zhou and C.-M. Che,
Org. Lett., 2000, 2, 2233; (q) I. Nageli, C. Baud, G. Bernardinelli,
Y. Jacquier, M. Moran and P. Muller, Helv. Chim. Acta, 1997, 80, 1087;
(r) J. P. Mahy, G. Bedi, P. Battioni and D. Mansuy, Tetrahedron Lett.,
A 25 mL round-bottom flask equipped with a magnetic stirrer
was charged with benzylic reagent (1 mmol), amide (0.5 mmol),
acetonitrile (3 ml), N-bromosuccinide (NBS) (0.5 mmol) and
gold-complex 1 (3 mol%). The resulting mixture was continu-
ously stirred at 70 °C for 2–4 h. At the end of the reaction, the
mixture was filtered and the filtrate was extracted with ethyl
acetate (3–10 mL). The combined organic layer was washed
with brine, dried over anhydrous sodium sulfate and concen-
trated under reduced pressure. The residue was purified by
column chromatography on silica gel and the fraction was col-
lected and concentrated to give the desired product.
Acknowledgements
We gratefully acknowledge the National Natural Science Foun-
dation of China (20832001, 20972065, 21074054) and the
National Basic Research Program of China ((2007CB925103,
2010CB92330) for their financial support. The Major Scientific
9140 | Org. Biomol. Chem., 2012, 10, 9137–9141
This journal is © The Royal Society of Chemistry 2012