Journal of the American Chemical Society
Page 4 of 5
2011, 34, 169-208. (g) Hethcox, J. C.; Shockley, S. E.; Stolz, B. M. ACS
Catal. 2016, 6, 6207-6213.
1
(2) For catalytic AAA reactions producing α-tertiary carboxylic acid
derivatives, see: (a) Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.;
Snaddon, T. N. J. Am. Chem. Soc. 2016, 136, 5214-5217. (b) Trost, B. M.;
Lehr, K.; Michaelis, D. J.; Xu, J.; Buckl, A. K. J. Am. Chem. Soc. 2010,
132, 8915-8917. (c) Trost, B. M.; Michaelis, D. J.; Charpentier, J.; Xu, J.
Angew. Chem. Int. Ed. 2012, 51, 204-208. (d) Jiang, X.; Beiger, J. J.;
Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87-90. (e) Saito, A.; Kumagai,
N.; Shibasaki, M. Angew. Chem. Int. Ed. 2017, 56, 5551-5555. (f)
Spoehrle, S. S. M.; West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A.
D. J. Am. Chem. Soc. 2017, 139, 11895-11902. (g) Braun, M.; Meletis, P.;
Visse, R. Adv. Synth. Catal. 2011, 353, 3380-3384. (h) Jiang, X.; Boehm,
P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239-1242.
(3) Catalytic AAA reactions producing α-quaternary acyclic carboxylic
acid derivatives have utilized nitriles or amides as pronucleophiles. Those
methods have required stoichiometric amounts of a strong base, LiHMDS.
(a) Turnbull, B. W. H.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 6156-
6159 (nitriles). (b) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew.
Chem. Int. Ed. 2008, 47, 1741-1744 (amides).
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) Starkov, P.; Moore, J. T.; Duquette, D. C.; Stoltz, B. M.; Marek, I. J.
Am. Chem. Soc. 2017, 139, 9615-9620.
(5) For catalytic AAA reactions producing α-quaternary lactones, see:
(a) Li, X.-H.; Wan, S.-L.; Chen, D.; Liu, Q. R.; Ding, C.-H.; Fang, P.; Hou,
X.-L. Synthesis 2016, 48, 1568-1572. (b) Teng, B.; Chen, W.; Dong, S.;
Kee, C. W.; Gandamana, D. A.; Zong, L.; Tan, C.-H. J. Am. Chem. Soc.
2016, 138, 9935-9940. (c) James, J.; Guiry P. J. ACS Catal. 2017, 7, 1397-
1402.
(6) Amino acid Schiff base substrates are exceptionally suitable sub-
strates for catalytic AAA reaction due to high acidity of the α-proton and
chelation control of the E/Z geometry of enolate. For selected examples,
see: (a) Kanayama, T.; Yoshida, K.; Miyabe, H.; Takemoto, Y. Angew.
Chem. Int. Ed. 2003, 42, 2054-2056. (b) Huo, X.; He, R.; Fu, J.; Zhang, J.;
Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819-9822. (c) Wei,
L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018,
140, 1508-1513. (d) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am.
Chem. Soc. 2018, 140, 2080-2084.
(7) For selected examples of catalytic AAA reactions producing α-
quaternary aldehydes, see: (a) Mukherjee, S.; List, B. J. Am. Chem. Soc.
2007, 129, 11336-11337. (b) Jiang, G.; List, B. Angew. Chem. Int. Ed.
2011, 50, 9471-9474. (c) Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S.
Synthesis, 2014, 46, 1367-1373. (d) Krautwald, S.; Sarlah, D.; Schafroth,
M. A.; Carreira, E. M. Science 2013, 340, 1065-1068. (e) Wright, T. B.;
Evans, P. A. J. Am. Chem. Soc. 2016, 138, 15303-15306.
(8) For selected examples of catalytic AAA reactions producing cyclic
α-quaternary ketones, see: (a) Trost, B. M.; Schroeder, G. M. Chem. Eur.
J. 2005, 11, 174-184. (b) Numajiri, Y.; Pritchett, B. P.; Chiyoda, K.; Stoltz,
B. M. J. Am. Chem. Soc. 2015, 137, 1040-1043. (c) Chen, W.; Hartwig, J.
F. J. Am. Chem. Soc. 2014, 136, 15825-15828. (d) Pupo, G.; Properzi, R.;
List, B. Angew. Chem. Int. Ed. 2016, 55, 6099-6102.
(9) An example of AAA reactions for α-tetrasubstituted acyclic ketones,
see: Jiang, X.; Chen, W.; Hartwig, J. F. Angew. Chem. Int. Ed. 2016, 55,
5819-5823.
(10) (a) Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M. J.
Am. Chem. Soc. 2015, 137, 7075-7078. (b) Nagai, H.; Morita, Y.; Shimizu,
Y.; Kanai, M. Org. Lett. 2016, 18, 2276-2279. (c) Ishizawa, K.; Nagai, H.;
Shimizu, Y.; Kanai, M. Chem. Pharm. Bull. 2018, 66, 231-234.
(11) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem.
Soc. 1981, 103, 3099-3111.
(12) For a seminal example of hybrid catalysis in the AAA reaction us-
ing -cyano ester donors, see: Sawamura, M.; Sudoh, M.; Ito, Y. J. Am.
Chem. Soc. 1996, 118, 3309-3310.
(13) For a working hypothesis of the catalytic cycle and structure of the
boron catalyst, see Supporting Information (SI).
aFor 7a and 7c, base = DBU, 12 h. For 7f and 7g, base = N-Me-
pyrrolidine, 24 h.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental details and characterization data (PDF)
AUTHOR INFORMATION
Corresponding Author
Present Address
§Y.S.: Department of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number
JP17H06442 (MK) (Hybrid Catalysis), Grant-in-Aid for Scientific
Research (C) from JSPS (YS), and the research grant of Astellas
Foundation for Research on Metabolic Disorders (YS). TF and
HC thank Tobe Maki Scholarship and Kobayashi International
Scholarship, respectively, for their fellowships.
(14) This reaction type can be also viewed as a catalytic enantioselec-
tive formal Ireland-Claisen rearrangement (ICR). Previously-reported
asymmetric ICR required excess amounts of chiral activators. (a) Corey, E.
J.; Lee, D.-H. J. Am. Chem. Soc. 1991, 113, 4026-4028. (b) Kazmaier, U.;
Mues, H.; Krebs, A. Chem. Eur. J. 2002, 8, 1850-1855.
(15) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem. Int. Ed.
2012, 51, 936-940.
(16) When L1 was used, 2r was obtained in 85% yield and 70% ee.
(17) When the corresponding substrate containing more reactive bro-
mide was used, however, the target product was not obtained.
REFERENCES
(1) (a) Oliver, S.; Evans, A. Synthesis 2013, 45, 3179-3198. (b) Trost,
B. M. J. Org. Chem. 2004, 69, 5813-5837. (c) Mohr, J. T.; Stoltz, B. M.
Chem. Asian. J. 2007, 2, 1476-1491. (d) Weaver, J.; Recio, III, A.; Gren-
ning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846-1913. (e) Helmchen,
G.; Dahnz, A.; Dubon, P.; Schelwies, M; Wihofen, R. Chem. Commun.
2007, 675-691. (f) Hartwig, J. F.; Poucy, M. J. Top. Organomet. Chem.
ACS Paragon Plus Environment