The Journal of Organic Chemistry
Page 14 of 14
REFERENCES
1
2
3
4
5
6
7
8
9
1 Ueda, A.; Yamamoto, A.; Kato, D.; Kishi, Y. J. Am. Chem. Soc. 2014, 136, 5171-5176.
2 Ding, C.; Zhang, Y.; Chen, H.; Yang, Z.; Wild, C.; Ye, N.; Ester, C. D.; Xiong, A.; White, M. A.; Shen, Q.; Zhou, J. J. Med. Chem. 2013, 56,
8814-8825.
3 For reviews on enone synthesis, see: (a) Marsden, S. P. Science of Synthesis 2005, 26, 1045-1121. (b) Buckle, D. R.; Pinto, I. L. In Compre-
hensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol 7., pp 119-146. (c) Larock, R. C. Comprehensive Organic Transforam-
tions, 2nd edition; John Wiley & Sons: New York, 1999; pp 251-256.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4 Heathcock, C. H. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I. Eds.; Pergamon: New York, 1990, vol 2., p133-179.
5 (a) Ren, K.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, Z. J. Org. Chem. 2014, 79, 2170-2177. (b) Nakano, T.; Ishii, Y.; Ogawa, M. J. Org.
Chem. 1987, 52, 4855-4859. (c) Liu, J.; Ma, S. Org. Lett. 2013, 15, 5150-5153. (d)For an example of allylic oxidation, see: Catino, A. J.; Fors-
lund, R. E.; Doyle, M. P. J. Am. Chem. Soc. 2004, 126, 13622-13623. (e) For examples of oxidative dehydrogenation, see, Nicolaou, K. C.;
Zhong, Y. L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596-7597.
6 Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675-5677.
7 Muzart, J. Eur. J. Org. Chem. 2010, 3779-3790.
8 (a) For an example with Au, see: Pennell, M. N.; Unthank, M. G.; Turner, P.; Sheppard, T. D. J. Org. Chem. 2011, 76, 1479-1482. (b) for an
example with Ag, see: Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc. 2007, 129, 12902-12903. (c) for an
example with Ru, see: Cadierno, V.; Crochet, P.; Garcia-Garrido, S. E.; Gimeno, J. Dalton Trans. 2010, 39, 4015-4031. (d) for examples with Cu,
see: Collins, B. S. L.; Suero, M. G.; Gaunt, M. J. Angew. Chem. Int. Ed. 2013, 52, 5799-5802. (e) Xiong, Y. –P.; Wu, M. –Y.; Zhang, X. –Y.; Ma,
C. –L.; Huang, L.; Zhao, L. –J.; Tan, B.; Liu, X. –Y. Org. Lett. 2014, 16, 1000-1003.
9 (a) For a review on transition metal catalyzed hydroacylation, see: Willis, M. C. Chem. Rev. 2010, 110, 725-748. (b) Biju, A. T.; Wurz, N. E.;
Glorius, F. J. Am. Chem. Soc. 2010, 132, 5970-5971. (c) Parsons, S. R.; Hooper J. F.; Willis, M. C. Org. Lett. 2011, 13, 998-1000.
10 (a) For an example with organolithium reagents, see: Kong, K.; Moussa, Z.; Lee, C.; Romo, D. J. Am. Chem. Soc. 2011, 133, 19844-19856.
(b) for an example with organomagnesium reagents, see: Fu, R.; Ye, J. –L.; Dai, X. –J.; Ruan, Y. –P.; Huang, P. –Q. J. Org. Chem. 2010, 75, 4230-
4243. (c) for an example with organosilicon reagents, see: Fleming, I.; Pearce, A. J. Chem. Soc., Perkin Trans. 1 1980, 2485-2489. (d) for an ex-
ample with organostannanes, see: Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1988, 110, 1557-1565. (e) for an example with organoboranes,
see: Ishiyama, N.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1991, 64, 1999-2001.
11 (a) Wolan, A.; Six, Y. Tetrahedron 2010, 66, 15-61. (b) Wolan, A.; Six, Y. Tetrahedron 2010, 66, 3097-3133.
12 Kulinkovich, O. G.; Meijere, A. Chem. Rev. 2000, 100, 2789-2834.
13 (a) Kasatkin, A.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1995, 36, 6075-6078. (b) Okamoto, S.; Kasatkin, A.; Zubaidha, P. K.; Sato, F. J.
Am. Chem. Soc. 1996, 118, 2208-2216.
14 Six, Y. Eur. J. Org. Chem. 2003, 1157-1171.
15 Wolan, A.; Cadoret, F.; Six, Y. Tetrahedron 2009, 7429-7439.
16 Takahashi, T.; Xi, C.; Ura, Y.; Nakajima, K. J. Am. Chem. Soc. 2000, 122, 3228-3229.
17 Yamashita, K.; Chatani, N. Synlett 2005, 919-922.
18 (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818. (b) for a review on Weinreb amides, see: Balasubramaniam, S.; Aid-
hen, I. S. Synthesis 2008, 3707-3738.
19 Bach, J.; Galobardes, M.; Garcia, J.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 1998, 39, 6765-6768.
20 Yu, L. –F.; Hu, H. –N.; Nan, F. –J. J. Org. Chem. 2011, 76, 1448-1451.
21 (a) Harada, K.; Urabe, H.; Sato, F. Tetrahedron Lett. 1995, 36, 3203-3206. (b) for a review on titanium alkyne complexes, see: Sato, F.;
Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835-2886.
22 It was determined later that for aliphatic Weinreb amides as little as 1.2 equivalents could be used to obtain the optimal yield.
23 a) Rassadin, V.; Six, Y. Tetrahedron 2014, 70, 787-794. b) Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y. Chem. Comm. 2003, 2820-2821.
c) Eisch, J. J.; Gitua, J. N. Organometallics 2003, 22, 24-26.
24 Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapauntzis, I.; Vu, V. A. Angew. Chem. Int. Ed. 2003, 42,
4302-4320.
25 For a similar trend in the reaction of aromatic Weinreb amides, see: Rudzinski, D. M.; Kelly, C. B.; Leadbeater, N. E. Chem. Commun. 2012,
48, 9610-9612.
26 For an example of a pyridine ligand on a titanium complex, see: Noor, A.; Kempe, R. Eur. J. Inorg. Chem. 2008, 2377-2381.
27 Spencer, W. T., III; Vaidya, T.; Frontier, A. J. Eur. J. Org. Chem. 2013, 3621-3633.
28 The alkyne was isolated back in near quantative yield, titanacycle formation did not occur.
29 (a) Suzuki, D.; Nobe, Y.; Watai, Y.; Tanaka, R.; Takayama, Y.; Sato, F.; Urabe, H. J. Am. Chem. Soc. 2005, 127, 7474-7479. (b) Teng, X.;
Wada, T.; Okamoto, S.; Sato, F. Tetrahedron Lett. 2001, 42, 5501-5503.
30 (a) Rudzinski, D. M.; Kelly, C. B.; Leadbeater, N. E. Chem. Commun. 2012, 48, 9610-9612. (b) Shintani, R.; Kimura, T.; Hayashi, T. Chem.
Commun. 2005, 3213-3214.
31 Niu, T.; Zhang, W.; Huang, D.; Xu, C.; Wang, H.; Hu, Y. Org. Lett. 2009, 11, 4474-4477.
32 Wei, Y.; Tang, J.; Cong, X.; Zeng, X. Green Chem. 2013, 15, 3165-3169.
33 Fujihara, T.; Tatsumi, K.; Terao, J.; Tsuji, Y. Org. Lett. 2013, 15, 2286-2289.
34 Ooi, I.; Sakurai, T.; Takaya, J.; Iwasawa, N. Chem. Eur. J. 2012, 18, 14618-14621.
ACS Paragon Plus Environment