calculations8 reveal that deprotonation with lithium amide
bases leads directly to N-metalated nitriles, precluding their
use for kinetically accessing C-metalated nitriles. Alterna-
tively, the metal hydrides NaH and KH are generally
ineffective for deprotonating aliphatic nitriles,1b whereas
t-BuOK, while excellent for deprotonating nitriles,9 has the
complication of establishing rapid prototropic equilibria.10
A potentially general route for generating metalated
nitriles, without recourse to amide bases, is through halogen-
metal exchange.11 Halogen-metal exchange of related R-
iodoketones12 permits facile enolate formation, though the
analogous formation of metalated nitriles is unknown, despite
the opportunity for selectively generating elusive C-metalated
nitriles. The opportunity for accessing C-metalated nitriles,
with the added attraction of potentially generating metalated
nitriles in the presence of more acidic functionality, stimu-
lated the development of a halogen-metal exchange with
R-halonitriles.
Table 1. Halogen-Metal Exchange of R-Halonitriles
Diverse R-halonitriles are available by free-radical halo-
genation13 and from R-haloacrylonitriles by Diels-Alder
cycloaddition14 and organomercurial conjugate additions.15
Direct halogenation is particularly robust, providing R-bro-
16
monitriles with PBr3/Br2 and R-chloronitriles with PCl5/
pyridine17 (Scheme 1). Collectively, these halogenations
Scheme 1. Synthesis of R-Halonitriles
provide a range of R-halonitriles for probing the halogen-
metal exchange.
Halogen-metal exchange of R-halonitriles is extremely
rapid. Exploratory exchange reactions with 4a and i-PrMgBr
caused an immediate yellow coloration that correlated with
(8) Carlier, P. R. Chirality 2003, 15, 340.
(9) For recent examples, see: (a) Fleming, F. F.; Gudipati, V.; Steward,
O. W. J. Org. Chem. 2003, 68, 3943. (b) Bunlaksananusorn, T.; Rodriguez,
A. L.; Knochel, P. Chem. Commun. 2001, 745. (c) Makosza, M.; Judka,
M. Chem. Eur. J. 2002, 8, 4234.
a Isolated yields for sequential metalation-alkylation, column a, and with
an in situ metalation-alkylation, column b. b Prepared by free-radical
bromination with NBS.18
(10) Fleming, F. F.; Funk, L. A.; Altundas, R.; Sharief, V. J. Org. Chem.
2002, 67, 9414.
(11) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem.,
Int. Ed. 2000, 39, 4415.
the virtually instantaneous exchange at -78 °C. Intercepting
the metalated nitrile derived from 4a with allyl bromide
affords the corresponding quaternary nitrile 5a (Table 1, entry
1). The generality of the halogen-metal exchange was
probed with 4b and a range of electrophiles that affords a
variety of alkylated nitriles (Table 1, entries 2-6).
(12) (a) William, A. D.; Kobayashi, Y. J. Org. Chem. 2002, 67, 8771.
(b) Aoki, Y.; Oshima, K.; Utimoto, K. Chem. Lett. 1995, 463.
(13) (a) Hartzler, H. D. In The Chemistry of the Cyano Group; Rappoport,
Z., Ed.; Wiley-Interscience: New York, 1970; Chapter 11, pp 671-716.
(b) For a novel photochemical conjugate addition-halogenation, see:
Mitani, M.; Kato, I.; Koyama, K. J. Am. Chem. Soc. 1983, 105, 6719.
(14) (a) Aggarwal, V. K.; Ali, A.; Coogan, M. P. Tetrahedron 1999, 55,
293. (b) Ranganathan, S.; Ranganathan, D.; Mehrota, A. K. Synthesis 1977,
289.
(15) (a) Russel, G. A.; Shi, B. Z. Synlett 1993, 701. (b) Giese, B.;
Gonza´lez-Go´mez, J.-A. Chem. Ber. 1986, 119, 1291.
(16) Stevens, C. L.; Coffield, T. H. J. Am. Chem. Soc. 1951, 73, 103.
(17) Freeman, P. K.; Balls, D. M. Brown, D. J. J. Org. Chem. 1968, 33,
2211.
The extremely rapid halogen-metal exchange suggested
performing the exchange with the electrophile in situ.19
(18) Rouz-Schmitt, M.-C.; Petit, A.; Sevin, A.; Seyden-Penne, J.; Anh,
N. T. Tetrahedron 1990, 46, 1263.
502
Org. Lett., Vol. 6, No. 4, 2004