NJC
Paper
13 M. V. Werrett, S. Muzzioli, P. J. Wright, A. Palazzi, P. Raiteri,
S. Zacchini, M. Massi and S. Stagni, Inorg. Chem., 2014, 53,
229–243.
14 M. Tariluzzi, A. S. Hameed, I. H. Bechtold, A. J. Bortluzzi
and A. A. Merlo, J. Mater. Chem. C, 2013, 1, 5583–5593.
15 M. S. Poonian, E. F. Nowoswiat, J. F. Blout, T. H. Williams,
R. G. Picther and M. J. Kramer, J. Med. Chem., 1976, 19,
286–290.
afforded urea as the major product. The NMR spectra of
intermediates IV and XII and minor product XI are presented
in the ESI.†
All the synthesized compounds were characterized by 1H NMR,
13C NMR, mass and IR spectroscopies. The compounds were
matched with previously reported compounds which clearly con-
firm the product formations. The model spectra are provided in
the ESI.†
16 P. Lignier, J. Estager, N. Kardos, L. Gravouil, J. Gazza and
E. Naffrecjpix, Ultrason. Sonochem., 2011, 18, 28–31.
17 L. Schwarz, U. Girreser and B. Clement, Eur. J. Org. Chem.,
2014, 1961–1975.
Conclusion
18 P. B. Palde and T. F. Jamison, Angew. Chem., Int. Ed., 2011,
50, 3525–3528.
19 H. Goksu, S. F. Ho, O. Metin, K. Korkmaz, A. M. Garcia,
M. S. Gultekin and S. Sun, ACS Catal., 2014, 4, 1777–1782.
20 E. Galeazzi, A. Guzman and J. L. Nava, J. Org. Chem., 1995,
60, 1090–1092.
New efficient synthetic methods were developed from the
unprecedented conversion of carbonyl compounds with eco-
nomically cheaper reagents. A plausible mechanism for the
formation of their corresponding products was proposed and
explained. The ongoing research is on synthesizing biologically
active nitrile, tetrazole, and urea based derivatives.
21 P. Marce, J. Lynch, A. J. Blacker and J. M. J. Williams, Chem.
Commun., 2016, 52, 1436–1438.
22 N. A. Stephenson, S. H. Gellman and S. S. Stahl, RSC Adv.,
2014, 4, 46840–46843.
Acknowledgements
23 P. Giannoccaro, Inorg. Chim. Acta, 1988, 142, 81–84.
24 B. M. B. Bennet, J. H. Saunders and E. E. Hardy, J. Am. Chem.
Soc., 1953, 75, 2101–2103.
25 J. Pouessel, O. Jacquet and T. Cantat, ChemCatChem, 2013,
5, 3552–3556.
The authors are grateful to UGC and DST, New Delhi, India, for
financial support and the DST-IRHPA program for providing
the high resolution NMR facility and acknowledge a UGC-Non-
Net fellowship for financial support.
26 E. I. Pereira, F. B. Minussi, C. C. da Cruz, A. C. Bernardi and
C. Ribeiro, J. Agric. Food Chem., 2012, 60, 5267–5272.
27 M.-J. Deng, J.-M. Chen, K.-T. Lu, C.-C. Wang, J.-F. Lee and
J.-K. Chang, RSC Adv., 2012, 2, 9383–9386.
References
1 N. Ambreen and T. Wirth, Eur. J. Org. Chem., 2014,
7590–7593.
´
28 J. Martı-Rujas, B. M. Kariuki, C. E. Hughes, A. Morte-
´
Rodenas, F. Guo, Z. Glavcheva-Laleva, K. Tas-temu¨r,
2 S. Zhao, L. Hung and Y.-F. Song, Eur. J. Inorg. Chem., 2013,
1659–1663.
L.-l. Ooi, L. Yeo and K. D. M. Harris, New J. Chem., 2011,
35, 1515–1521.
29 R. Zhu, J. Shen, Y. Wei and F. Zhang, New J. Chem., 2011, 35,
1861–1866.
3 K. P. Guzen, A. S. Guarezemini, A. T. G. Orfao, R. Cella,
C. M. P. Pereira and H. A. Stefani, Tetrahedron Lett., 2007,
48, 1845–1848.
30 B. A. Clow and N. L. Helmrich, Trans. Faraday Soc., 1940, 35,
685–696.
4 C. Kerner, S.-D. Straub, Y. Sun and W. R. Thiel, Eur. J. Org.
Chem., 2016, 3060–3064.
31 F. Rodriguez-Ropero and N. F. van der Vegt, Phys. Chem.
Chem. Phys., 2015, 17, 8491–8498.
32 P. Sikka, Med. Chem., 2015, 5, 479–483.
33 A. L. Grillot, A. Le Tiran, D. Shannon, E. Krueger, Y. Liao,
H. O’Dowd, Q. Tang, S. Ronkin, T. Wang, N. Waal, P. Li,
D. Lauffer, E. Sizensky, J. Tanoury, E. Perola, T. H.
Grossman, T. Doyle, B. Hanzelka, S. Jones, V. Dixit,
N. Ewing, S. Liao, B. Boucher, M. Jacobs, Y. Bennani and
P. S. Charifson, J. Med. Chem., 2014, 57, 8792–8816.
34 W. E. Coyne and J. W. Cusic, J. Med. Chem., 1967, 10, 541–546.
5 J.-J. Shie and J.-M. Fand, J. Org. Chem., 2003, 68, 1158–1160.
6 P. M. Bradford, G. E. Michael and G. Frank Jr., Name
reactions and reagents in organic synthesis, Wiley Interscience,
2005.
¨
7 K. F. Schmidt, Uber den Imin-Rest, Ber. Dtsch. Chem. Ges. A,
1924, 57, 704–723, DOI: 10.1002/cber.19240570423.
8 J. Aube and G. L. Milligan, J. Am. Chem. Soc., 1991, 113,
8965–8966.
9 D. Chaturvedi, A. K. Chaturvedi, N. Mishra and V. Mishra,
Synlett, 2012, 2627–2630.
10 B. J. Al-Hourani, S. K. Sharma, J. Y. Mane, J. Tuszynski, 35 N. Ribeiro, F. Thuaud, Y. Bernard, C. Gaiddon, T. Cresteil,
V. Baracos, T. Kniess, M. Suresh, J. Pietzsch and F. Wuest,
A. Hild, E. C. Hirsch, P. P. Michel, C. G. Nebigil and
Bioorg. Med. Chem. Lett., 2011, 21, 1823–1826.
L. Desaubry, J. Med. Chem., 2012, 55, 10064–10073.
11 R. Sribalan, A. Lavanya, M. Kirubavathi and V. Padmini, 36 F. Glannessi, P. Pessotto, E. Tassoni, P. Chiodi, R. Conti,
J. Saudi Chem. Soc., 2016, DOI: 10.1016/j.jscs.2016.03.004.
12 L. M. T. Frija, I. Reva, A. Ismael, D. V. Coelho, R. Fausto and
M. L. S. Cristano, Org. Biomol. Chem., 2011, 9, 6040–6054.
F. D. Angelis, N. D. Uorno, R. Catini, R. Delas, M. O. Tinti,
P. Carminati and A. Arduini, J. Med. Chem., 2003, 46,
303–309.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017
New J. Chem.