286
H. Rhim et al. / Bioorg. Med. Chem. Lett. 15 (2005) 283–286
5. Llinas, R.; Yarom, Y. J. Physiol. 1981, 315, 549.
6. Gutnick, M. J.; Yarom, Y. J. Neurosci. Methods 1989, 28,
93.
7. Bal, T.; McCormick, D. A. J. Physiol. 1993, 468, 669.
8. Huguenard, J. R.; Prince, D. A. J. Neurosci. 1994, 14,
5485.
9. Huguenard, J. R. Annu. Rev. Physiol. 1996, 58, 329.
10. Tsakiridou, E.; Bertollini, L.; De Curtis, M.; Avanzini, G.;
Pape, H. Neuroscience 1995, 15, 3110.
11. Hogan, Q. H.; McCallum, J. B.; Sarantopoulos, C.;
Aason, M.; Mynlieff, M.; Kwok, W. M.; Bosnjak, Z. J.
Pain 2000, 86, 43.
12. Cribbs, L. L.; Lee, J.-H.; Yang, J.; Satin, J.; Zhang, Y.;
Daud, A.; Barclay, J.; Williamson, M. P.; Fox, M.; Rees,
M.; Perez-Reyes, E. Circ. Res. 1998, 83, 103.
13. Lee, J.-H.; Daud, A. N.; Cribbs, L. L.; Lacerda, A. E.;
Pereverzev, A.; Klo¨ckner, U.; Schneider, T.; Perez-Reyes,
E. J. Neurosci. 1999, 19, 1912.
14. Perez-Reyes, E.; Cribbs, L. L.; Daud, A.; Lacerda, A. E.;
Barclay, J.; Williamson, M. P.; Fox, M.; Ress, M.; Lee,
J.-H. Nature 1998, 391, 896.
15. Randall, A.; Benham, C. D. Mol. Cell. Neurosci. 1999, 14,
255.
16. Chuang, R. S.; Jaffe, H.; Cribbs, L.; Perez-Reyes, E.;
Swartz, K. J. Nat. Neurosci. 1998, 1, 668.
(98.6 1.3% inhibition) in these pairs showed more
potent efficacy against N-type than T-type channels
and thus less selectivity for T-type channels
(T/N = 0.9-fold, respectively). Meanwhile, compound
9a (KYS05049), the most potent compound against
two isoforms of T-type Ca2+ channel sub-family,
showed low selectivity over N-type channels by only
6.0-fold. Also, compounds 9b (KYS05050), 8a and 8b,
the most potent compounds against T-type channels,
did not show the favorable selectivity for T-type chan-
nels by 10.1-, 2.9- and 5.3-fold, respectively. However,
compound 5b (KYS05044) possessing x-aminoalkyl
group at 3-position and methyl ester group at 4-position
blocked little the current of N-type channels (less than
1%) and thus exhibited the highest selectivity for T-type
over N-type channel (T/N = >100), even though com-
pound 5b (IC50 = 0.56 0.10 lM) was more potent than
mibefradil (IC50 = 1.34 0.49lM) by only 2.4-fold.
More importantly, all compounds, including compound
5b, had no cytotoxicity on HEK293 cells at 10lM con-
centration as confirmed using MTT assay method (data
not shown). Therefore, it is likely that compound 5b
would really be regarded as a new promising lead com-
pound for selective T-type Ca2+ channel blocker with re-
spect to the IC50 value and channel selectivity.26
17. Clozel, J. P.; Ertel, E. A.; Ertel, S. I. J. Hypertens.
1997(Suppl. 15), S17.
18. Mishra, S. K.; Hermsmeyer, K. Circ. Res. 1994, 75,
144.
In conclusion, new series of 3,4-dihydroquinazoline
derivatives containing both biphenyl and x-aminoalkyl
groups as a continuous research for a novel selective
T-type Ca2+ channel blocker were prepared and evalu-
ated for the blocking effects against two isoforms of T-
type Ca2+ channel subfamily and N-type Ca2+ channel.
In vitro results demonstrated that compound 5b in this
series exhibited both favorable potency and highest
selectivity for T-type Ca2+ channel in comparison with
mibefradil. Therefore, the discovery of compound 5b
(KYS05044), a novel and selective T-type Ca2+ channel
blocker, is expected to provide impetus for the develop-
ment of new T-type Ca2+ channel drugs as well as the re-
search in the field of electrophysiology.26 Encouraged by
these findings, further evaluation of pharmacokinetics
profiles and neuroprotective properties are in progress.
19. Lee, Y. S.; Lee, B. H.; Park, S. J.; Kang, S. B.; Rhim, H.;
Park, J.-Y.; Lee, J.-H.; Jeong, S.-W.; Lee, J. Y. Bioorg.
Med. Chem. Lett. 2004, 13, 3379–3384.
20. Doddareddy, M. R.; Jung, H. K.; Lee, J. Y.; Lee, Y. S.;
Cho, Y. S.; Koh, H. Y.; Pae, A. N. Bioorg. Med. Chem.
2004, 12, 1605–1611.
21. (a) Appel, R.; Halstenberg, M. In Organophosphorus
Reagents its Organic Synthesis; Cadogan, J. I. G., Ed.;
Academic Press: London, 1979; p 378ff; (b) Okawa, T.;
Osakada, N.; Eguchi, S.; Kakehi, A. Tetrahedron 1997, 53,
16061–16082.
22. (a) Gaucher, A.; Zuliani, Y.; Cabaret, D.; Wakselman, M.;
Mazaleyrat, J.-P. Tetrahedron: Asymmetry 2001, 12, 2571;
(b) Dhaon, M. K.; Olesen, R. K.; Ramasamy, K. J. Org.
Chem. 1982, 47, 1962.
23. Lee, J.-H.; Gomora, J. C.; Cribbs, L. L.; Perez-Reyes, E.
J. Biophys. 1999, 77, 3034.
24. Monteil, A.; Chemin, J.; Bourinet, E.; Mennessier, G.;
Lory, P.; Nargeot, J. J. Biol. Chem. 2000, 275, 6090.
25. (a) Randall, A. D.; Tsien, R. W. Neuropharmacology 1997,
36, 879–893; (b) Randall, A. D. J. Physiol. 1995, 485, 49P;
(c) Gomora, J. C.; Enyeart, J. A.; Enyeart, J. J. Mol.
Pharmacol. 1999, 56, 1192; (d) Nilius, B.; Prenen, J.;
Kamouchi, M.; Viana, F.; Voets, T.; Droogmans, G. Br.
J. Pharmacol. 1997, 121, 547.
Acknowledgements
This study was supported by Vision 21 Program from
Korea Institute of Science and Technology (2E18000-
04-024).
26. Spectral data of the selected compound: 5b (KYS05044):
1H NMR (300MHz, CDCl3) d 7.58–6.91 (13H, m, Ph),
5.10 (1H, t, J = 7.1Hz, –CO–CH2–CH–N–), 3.66 (3H, s,
CH3O–), 3.46–3.30 (2H, m, –N–CH2–CH2–), 2.87 (1H, dd,
J = 7.1, 14.9Hz, –CO–CH–CH–N–), 2.74–2.65 (3H, m,
–CO–CH–CH–N– and –CH2–CH2–NH2), 1.78–1.27 (6H,
m, –CH2–C3H6–CH2–); 13C NMR (75MHz, CDCl3) d
171.5, 147.1, 141.1, 137.0, 135.4, 129.1, 128.9, 128.5, 127.0,
126.9, 125.7, 123.3, 122.3, 115.1, 56.2, 52.1, 47.8, 41.7,
39.1, 32.3, 28.3, 25.0, 24.1; ES-MS (m/z, M + 1) 457;
HRMS (FAB, M + 1) calcd for C28H33N4O2 457.2604,
found 457.2608.
References and notes
1. Cox, B.; Denyer, J. C. Exp. Opin. Ther. Patents 1998, 8,
1237–1250.
2. Williams, M.; Kowaluk, E. A.; Arneric, S. P. J. Med.
Chem. 1999, 42, 1481–1500.
3. Tsien, R. W.; Lipscombe, D.; Madison, D.; Bley, K.; Fox,
M. Trends Neurosci. 1995, 18, 52–54.
4. Matthews, E. A.; Dickenson, A. H. Eur. J. Pharmacol.
2001, 415, 141–149.