Figure 1. Schematic drawing for the off-on fluorescence mech-
anism of a molecular tripod in streptavidin binding.
to develop fluorescent probes showing fluorescence enhance-
ment upon binding to (strept)avidin.6 Recently, Lo and co-
workers developed rhenium(I) polypyridine-biotin com-
plexes that show luminescence enhancement and lifetime
elongation upon binding to avidin.6a.b Sleiman recently
showed that ruthenium(II) phenanthroline-biotin conjugates
can be used as luminescent probes for avidin with lumines-
cence enhancement when binding to avidin.6e We were
interested in the development of molecular tripod (biotin-
quencher-fluorophore conjugate)-based streptavidin probes
with novel off-on fluorescence mechanisms.
Here we report on new fluorescent probes that are useful
in the detection of streptavidin in homogeneous solution. The
probes are composed of biotin, a fluorophore, a quencher,
and a spacer. The quencher-fluorophore pair as a reporting
group can monitor any fluorescence change before and after
the biotin-streptavidin binding event.7,8 The spacer maintains
a quencher-fluorophore pair in spatial proximity, causing
the fluorescence of the pair to be quenched in an aqueous,
unbound state via the ground-state intramolecular complex
between the fluorophore and the quencher.9 When the probe
encounters streptavidin, it forms a streptavidin-biotin com-
plex that perturbs the ground-state intramolecular complex
and eventually impedes the self-quenching of a quencher-
fluorophore pair (Figure 1). We call these probes “molecular
Figure 2. Nomenclature of the molecular tripods and reference
compounds used in this work.
tripods” because they have trifurcated structures. Because
streptavidin binding triggers fluorescence enhancement, in
principle, molecular tripods can be used for the detection of
streptavidin in homogeneous assay.
The molecular tripods consist of biotin as a substrate for
streptavidin, fluorescein, coumarin 343, and rhodamine as
fluorophores and carbazole as a quencher (Figure 2). A
spacer based on 5-hydroxyisophthalic acid was used for ease
of synthesis. Streptavidin, a nonglycosylated 52 800 Da
protein with a near-neutral isoelectric point, binds four biotins
per molecule with high affinity and selectivity. We also
synthesized two kinds of reference compounds; quencher-
fluorophore conjugates (QF, QC, QR) and biotin-fluoro-
phore conjugates (BF, BC, BR) (Figure 2).10,11 In the case
of the biotin-fluorophore conjugates, biotin was directly
connected to fluorophores without the 5-hydroxyisophthalic
acid spacer.10 To define the quenching efficiency, we also
prepared alkyl derivatives of fluorophores (F′, C′, R′).10
To ensure the spontaneous formation of intramolecular
ground-state dimeric complexes in the quencher-fluorophore
pairs, self-quenching efficiency was measured for carbazole-
containing probes (Table 1). Because the protein surface
usually works as a fluorescence energy transfer sinker,4,11,12
(5) (a) Gruber, H. J.; Marek, M.; Schindler, H.; Kaiser, K. Bioconjugate
Chem. 1997, 8, 552. (b) Marek, M.; Kaiser, K.; Gruber, H. J. Bioconjugate
Chem. 1997, 8, 560. (c) Gruber, H. J.; Hahn, C. D.; Kada, G.; Riener. C.
K.; Harms, G. S.; Ahrer, W.; Dax, T. G.; Knaus, H.-G. Bioconjugate Chem.
2000 11, 696.
(6) (a) Lo, K. K.-W.; Hui, W.-K.; Ng, D. C.-M. J. Am. Chem. Soc. 2002,
124, 9344. (b) Lo, K. K.-W.; Tsang, K. H.-K. Organometallics 2004, 23,
3062. (c) Lo, K. K.-W.; Chan, J. S.-W.; Lui, L.-H.; Chung, C.-K.
Organometallics 2004, 23, 3108. (d) Lo, K. K.-W.; Lee, T. K.-M. Inorg.
Chem. 2004, 43, 5275. (e) Slim, M.; Sleiman, H. F. Bioconjugate Chem.
2004, 15, 949.
(7) Neuweiler, H.; Schulz, A.; Vaiana, A. C.; Smith, J. C.; Kaul, S.;
Wolfrum, J.; Sauer, M. Angew. Chem., Int. Ed. 2002, 41, 4769.
(8) Quencher-fluorophore pairs have been applied for sensing small
molecules to high molecular weight analytes. (a) For cations: Aoki, I.; Sakai,
T.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1992, 730. (b) For
peptides: Chen, C.-T.; Wagner, H.; Still, W. C. Science 1998, 279, 851.
(c) For protein-ligand binding: Wei, A.-P.; Blumenthal, D. K.; Herron, J.
N. Anal. Chem. 1994, 66, 1500. (d) For cholic acid: Hossain, M. A.;
Hamasaki, K.; Takahashi, K.; Mihara, H.; Ueno, A. J. Am. Chem. Soc.
2001, 123, 7435.
(9) (a) Packard, B. Z.; Toptygin, D. D.; Komoriya, A.; Brand, L. Proc.
Natl. Acad. Sci. U.S.A. 1996, 93, 11640. (b) Takakusa, H.; Kikuchi, K.;
Urano, Y.; Higuchi, T.; Nagano, T. Anal. Chem. 2001, 73, 939. (c)
Johansson, M. K.; Fidder, H.; Dick, D.; Cook, R. M. J. Am. Chem. Soc.
2002, 124, 6950. (d) Johansson, M. K.; Cook, R. M. Chem. Eur. J. 2003,
9, 3466.
(10) See the Supporting Information.
(11) Specific binding of biotin-fluorescein conjugates towards strepta-
vidin was accompanied by fluorescence quenching: see ref 4.
(12) Gruber, H. J.; Kada, G.; Marek, M.; Kaiser, K. Biochim. Biopys.
Acta 1998, 1381, 203.
112
Org. Lett., Vol. 7, No. 1, 2005