A R T I C L E S
Sadow and Tilley
Scheme 1. General Catalytic Cycle for the Dehydrosilation of
complexes of the type Cp*2MR (M ) Sc, Lu, Y; R ) H, CH3)
are reactive toward unactivated C-H bonds under mild condi-
tions.12,13 Investigations have shown that these C-H bond
activations, including those with methane, proceed through
concerted, four-centered, electrocyclic transition states. Although
C-H bond activations of this type were reported over 20 years
ago,12 only one example of a productive, selective, catalytic
hydrocarbon conversion via C-H σ-bond metathesis has been
reported (the alkylation of pyridine derivatives with [Cp2ZrH-
(THF)][BPh4]).15 Activations of methane via well-defined
σ-bond metathesis steps have not yet been incorporated into
catalytic cycles. On the other hand, several catalytic processes
that involve the related activation of Si-H bonds via four-
centered transition states have been reported (e.g., hydrosilane
dehydropolymerization,16,17 olefin hydrosilation,18 organosilane
hydrogenolysis19).
A strategy for the design of catalysts for hydrocarbon
transformations is suggested by the recent observation of arene
activation by the electrophilic cationic hafnium hydrosilyl
complex Cp2Hf(η2-SiHMes2)(µ-Me)B(C6F5)3.20 Based on this
reaction and known chemistry for related hafnium alkyl and
hydride complexes,21 a cycle for benzene dehydrosilylation was
proposed (Scheme 1). This proposed three-step cycle would
involve (1) a C-H bond activation reaction by a metal
hydrosilyl complex, (2) the transfer of an organic group from
the transition metal center to silicon, and (3) the dehydrocoupling
of M-H and Si-H bonds to reform the metal hydrosilyl
complex. Precedent for silicon-carbon bond formation (step
2) is provided by stoichiometric reactions of hydrosilanes with
hydrocarbyl complexes of d0 and fnd0 metals,22 and this step
Hydrocarbons
has been proposed for olefin hydrosilations catalyzed by Group
3 and lanthanide complexes.18 Dehydrocouplings of M-H (M
) Zr, Hf, Y, Sm, Lu) and Si-H bonds to produce metal-silicon
bonds (step 3) have also been established.19,23,24 Unfortunately,
Cp2Hf(η2-SiHMes2)(µ-Me)B(C6F5)3 does not appear to be a
suitable catalyst for arene dehydrosilation.20,26
A search for more reactive d0 metal silyl complexes was
prompted by the possibility that such complexes might activate
C-H bonds and serve as catalysts for hydrocarbon dehydrosi-
lation. In particular, scandium silyl complexes were suggested
by the similar covalent radii of hafnium and scandium,13a as
well as the isoelectronic relationship between complexes of the
types Cp2ScR and Cp2HfR+.27 Additionally, complexes of the
type Cp*2ScR (R ) hydrido, alkyl) have been shown to be
highly reactive toward the C-H bonds of hydrocarbons such
as methane, benzene, and styrene.13 A high reactivity for
scandium-silicon bonded compounds was also suggested by
the weaker nature of M-Si bonds in comparison to M-H and
M-C bonded analogues (M ) d0 transition metal or f-element
center).28 Furthermore, M-Si bonds react more rapidly than
M-C bonds in σ-bond metathesis reactions with silanes and
hydrogen, and metal silyl species have been shown to participate
in a number of catalytic cycles (e.g., those involving the
dehydropolymerization of silanes).23
The few reported compounds containing a scandium-silicon
bond are limited to the THF-stabilized complexes Cp2Sc(SiR3)-
(THF) (SiR3 ) Si(SiMe3)3, SitBuPh2, SiPh3, and Si(SiMe3)2-
Ph).29 Although these complexes are extremely reactive toward
polar, unsaturated organic substrates such as CO, xylyl isocya-
nide, and CO2, the only σ-bond metathesis process observed
for them was in the reaction of Cp2Sc[Si(SiMe3)3](THF) with
HCtCPh to form the dimeric acetylide [Cp2ScCtCPh]2.29c
Given the rich reactivity associated with 14-electron Cp*2Sc-
(11) (a) Vidal, V.; The´olier, A.; Thivolle-Cazat, J.; Basset, J.-M. J. Chem. Soc.,
Chem. Commun. 1995, 991-992. (b) Vidal, V.; The´olier, A.; Thivolle-
Cazat, J.; Basset, J.-M.; Corker, J. J. Am. Chem. Soc. 1996, 118, 4595-
4602. (c) Vidal, V.; The´olier, A.; Thivolle-Cazat, J.; Basset, J.-M. Science
1997, 276, 99-102. (d) Dufaud, V.; Basset, J.-M. Angew. Chem., Int. Ed.
1998, 37, 806-810. (e) Coperet, C.; Maury, O.; Thivolle-Cazat, J.; Basset,
J.-M. Angew. Chem., Int. Ed. 2001, 40, 2331-2334.
(12) (a) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51-56. (b)
Watson, P. L. J. Chem. Soc., Chem. Commun. 1983, 276-277. (c) Watson,
P. L. J. Am. Chem. Soc. 1983, 105, 6491-6493. (d) Booij, M.; Deelman,
B.-J.; Duchateau, R.; Postma, D. S.; Meetsma, A.; Teuben, J. H. Organo-
metallics 1993, 12, 3531-3540.
(13) (a) Thompson, M. E.; Bercaw, J. E. Pure Appl. Chem. 1984, 56, 1-11. (b)
Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M.
C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc.
1987, 109, 203-219.
(14) (a) Bruno, J. W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.;
Williams, J. M. J. Am. Chem. Soc. 1986, 108, 40-56. (b) Fendrick, C. M.;
Marks, T. J. J. Am. Chem. Soc. 1986, 108, 425-437.
(15) (a) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778-779.
(b) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C. Organometallics 1990,
9, 1546-1557. (c) Rodewald, S.; Jordan, R. F. J. Am. Chem. Soc. 1994,
116, 4491-4492.
(16) (a) Gauvin, F.; Harrod, J. F.; Woo, H.-G. AdV. Organomet. Chem. 1998,
42, 363-405. (b) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22-29.
(17) (a) Aitken, C.; Harrod, J. F.; Samuel, E. J. Organomet. Chem. 1985, 279,
C11-C13. (b) Aitken, C. T.; Harrod, J. F.; Samuel, E. J. Am. Chem. Soc.
1986, 108, 4059-4066. (c) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc.
1989, 111, 8043-8044. (d) Corey, J. Y.; Zhu, X.-H.; Bedard, T. C.; Lange,
L. D. Organometallics 1991, 10, 924-930. (e) Woo, H.-G.; Walzer, J. F.;
Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 7047-7055.
(18) (a) Molander, G. A.; Julius, M. J. Am. Chem. Soc. 1995, 117, 4415-4416.
(b) Fu, P.-F.; Brard, L.; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1995, 117,
7157-7168. (c) Gountchev, T. I.; Tilley, T. D. Organometallics 1999, 18,
2896-2905. (d) Voskoboynikov, A. Z.; Shestakova, A. K.; Beletskaya, I.
P. Organometallics 2001, 20, 2794-2801. (e) Dash, A. K.; Gourevich, I.;
Wang, J. Q.; Wang, J.; Kapon, M.; Eisen, M. S.; Organometallics 2001,
20, 5084-5104.
(23) Woo, H.-G.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 5698-
5707.
(24) Radu, N. S.; Tilley, T. D. J. Am. Chem. Soc. 1995, 117, 5863-5864.
(25) (a) Radu, N. S.; Hollander, F. J.; Tilley, T. D.; Rheingold, A. L. J. Chem.
Soc., Chem. Commun. 1996, 2459-2460. (b) Castillo, I.; Tilley, T. D.
Organometallics 2000, 19, 4733-4739. (c) Castillo, I.; Tilley, T. D. J.
Am. Chem. Soc. 2001, 123, 10526-10534.
(26) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 9462-9475.
(27) (a) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions
in Chemistry; Wiley-Interscience: New York, 1985. (b) Lauher, J. W.;
Hoffmann, R. J. J. Am. Chem. Soc. 1976, 98, 1729-1742.
(28) King, W. A.; Marks, T. J. Inorg. Chim. Acta 1995, 229, 343-354.
(29) (a) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1990,
112, 2011-2013. (b) Campion, B. K.; Heyn, R. H.; Tilley, T. D. Inorg.
Chem. 1990, 29, 4355-4356. (c) Campion, B. K.; Heyn, R. H.; Tilley, T.
D. Organometallics 1993, 12, 2584-2590. (d) Eisen, M. S. In Chemistry
of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John
Wiley & Sons: 1998; Volume 2, Chapter 35.
(19) Castillo, I.; Tilley, T. D. Organometallics 2001, 20, 5598-5605.
(20) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2002, 124, 6814-6815.
(21) (a) Sadow, A. D.; Tilley, T. D. Organometallics 2001, 20, 4457-4459.
(b) Sadow, A. D.; Tilley, T. D. Organometallics 2003, 22, 3577-3585.
(22) (a) Radu, N. S.; Tilley, T. D.; Rheingold, A. L. J. Organomet. Chem. 1996,
516, 41-49. (b) Voskoboynikov, A. Z.; Parshina, I. N.; Shestakova, A.
K.; Butin, K. P.; Beletskaya, I. P.; Kuz’mina, L. G.; Howard, J. A. K.
Organometallics 1997, 16, 4041-4055.
9
644 J. AM. CHEM. SOC. VOL. 127, NO. 2, 2005