RSC Advances
Page 6 of 7
DOI: 10.1039/C5RA22653H
2006, 128, 10281; (g) K. Lee, L. K. Povlich and J. Kim, Adv. Funct.
Mater., 2007, 17, 2580; (h) B. Liu and G. C. Bazan , Chem. Mater.,
2004, 16, 4467; (i) W. J. Zhang, L. Xu, J. G. Qin and C. L. Yang,
Macromol. Rapid Commun., 2013, 34, 442; (j) C. L. Zhu, L. B. Liu,
Q. Yang, F. T. Lv and S. Wang, Chem. Rev., 2012, 112, 4687.
(a) S. Wang, B. Liu, B. S. Gaylord and G. C. Bazan, Adv. Funct.
Mater., 2003, 13, 463; (b) H.ꢀA. Ho, M. Boissinot, M. G. Bergeron,
G. Corbeil, K. Doré, D. Boudreau and M. Leclerc, Angew. Chem. Int.
Ed., 2002, 41, 1548.
Before the reaction of ctDNA with DNase I, the ensemble of L
and ctDNA exhibited rather strong fluorescence as shown in Fig.
7. But, the fluorescence of the ensemble of was gradually reduced
after ctDNA hydrolyzed by DNase I with prolonging the reaction
time. It should be pointed out that the fluorescence enhancement
of L after mixing DNase I under the same conditions can be
neglected. With the DNA cleavage by DNase I, the aggregation
of L becomes less efficient, as a result, the mean hydrodynamic
diameter decreases to 560 nm as shown in Fig. 3. The preliminary
60
65
70
75
80
85
90
95
5
3
4
5
(a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S.
Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun.,
2001, 1740; (b) R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lamab and
B. Z. Tang, Chem. Soc. Rev., 2015, 44, 4228.
Y. Hong, H. Xiong, J. W. Y. Lam, M. Häußler, J. Liu, Y. Yu, Y.
Zhong, H. H. Y. Sung, I. D. Williams, K. S. Wong and B. Z. Tang,
Chem.ꢀEur. J., 2010, 16, 1232; (b) Y. Hong, S. Chen, C. W. T.
Leung, J. W. Y. Lam and B. Z. Tang, Chem.ꢀAsian J., 2013, 8, 1806.
Y. Li, R. T. K. Kwok, B. Z. Tang and B. Liu, RSC Adv., 2013, 3,
10135.
(a) Y. Lu, C. C. Xiao, Z. F. Yu, X. S. Zeng,Y. Ren and C. X. Li, J.
Mater. Chem., 2009, 19, 8796; (b) F. L. Han, Y. Lu, Q. Zhang, J. F.
Sun, X. S. Zeng and C. X. Li, J. Mater. Chem., 2012, 22, 4106; (c) J.
F. Sun, Y. Lu, D. D. Cheng, Y. J. Sun and X. S. Zeng, Polym. Chem.,
2013, 4, 4045; (d) L. Wang, Y. D. Li, J. F. Sun, Y. Lu, Y. J. Sun, D.
D. Cheng and C. X. Li, J. Appl. Polym. Sci., 2014, 131, 40933; (e) Y.
J. Sun, J. Wang, L. Jin, Y. Chang, J. J. Duan, Y. Lu, Polym. J., 2015,
DOI: 10.1038/pj.2015.62.
P. K. Bhowmik, H. Han, J. J. Cebe, I. K. Nedeltchev, S. W. Kang and
S. Kumar, Macromolecules, 2004, 37, 2688; (b) P. K. Bhowmik, S.
Kamatam, H. Han and A. K. Nedeltchev, Polymer, 2008, 49, 1748;
(c) P. K. Bhowmik, H. Han, and A. K. Nedeltchev, Polymer, 2006,
47, 8281.
10 results indicate the potential application of L as a fluorescent
probe to develop a labelꢀfree fluorescence nuclease assay.
Conclusions
In summary, a new fluorescent poly(pyridinium salt) derivative L
was synthesized via the ringꢀtransmutation polymerization
15 reaction. L exhibits interesting AIE activity, providing a new
sensing platform for biomolecules detection. The interactions
between L and ctDNA were carefully investigated by UVꢀvis
absorption spectra, DLS measurements, thermal denaturation
studies, CD measurements, as well as competing experiments
20 with EB. These results indicate the synergetic electrostatic
attraction and intercalation interaction should be responsible for
the binding of ctDNA with L. Furthermore, fluorescence turnꢀon
DNA biosensor with high sensitivity and selectivity was
developed by taking advantage of AIE effect of L. L was then
25 utilized successfully as fluorescent probe to follow the DNA
cleavage process by nuclease. With smart structural design, we
anticipate that this type of polymers has ideal properties to be
used as fluorescence turnꢀon biosensors for detection of other
bioꢀrelated molecules.
6
7
8
9
R. Gujadhur, D. Venkataraman and J. T. Kintigh, Tetrahedron Lett.,
2001, 42, 4791.
10 S. Urgaonkar, J. H. Xu and J. G. J. Verkade, Org. Chem., 2003, 68,
8416.
11 S. H. Chen, S. H. Hsiao, T. H. Su and G. S. Liou, Macromolecules,
2005, 38, 307.
12 H. J. Niu, H. Q. Kang, J. W. Cai, C. Wang, X. D. Bai and W. Wang,
Polym. Chem., 2011, 2, 2804.
30 Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (NO: 21074093, 20972111) and the
Program for New Century Excellent Talents in University
(NCETꢀ12ꢀ1066).
100 13 R.ꢀH. Chien, C.ꢀT. Lai and J.ꢀL. Hong, J. Phys. Chem. C, 2011, 115,
5958.
14 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332
15 (a) J. J. Stephanos, J. Inorg. Biochem., 1996, 62, 155; (b) E.
Froehlich, J. S. Mandeville, C. M. Weinert, L. Kreplak and H. A.
105
TajmirꢀRiahi, Biomacromolecules, 2011, 12, 511.
16 (a) J. B. LePecq and C. Paoletti, J. Mol. Biol., 1967, 27, 87; (b) A. R.
Morgan and D. E. Pulleyblank, Biochem. Biophys. Res. Commun.,
1974, 61, 346; (c) H. C. Birnboim and J. J. Jevcak, Cancer Res.,
1981, 41, 1889.
35 Notes and references
Tianjin Key Laboratory for Photoelectric Materials and Devices, School
of Materials Science & Engineering, Tianjin University of Technology,
Tianjin 300384, China.
Fax: +86ꢀ22ꢀ60214500; Tel: +86ꢀ22ꢀ60216748; Eꢀmail:
40 luyan@tjut.edu.cn
† Electronic Supplementary Information (ESI) available: [Synthesis and
characterization data of compounds 1ꢀ5; Calt thymus DNA melting
curves in the absence and presence of Poly1; PL spectra of Poly1 in PBS
solution in the presence of different concentrations of calf thymus DNA].
45 See DOI: 10.1039/b000000x/
110 17 Y. Liu, L. Yu, Y. Chen, Y.ꢀL. Zhao and H. Yang, J. Am. Chem. Soc.,
2007, 129, 10656.
18 (a) C. A. Sprecher, W. A. Baase and W. C. Johnson Jr, Biopolymers,
1979, 18, 1009; (b) C. Zimmer and G. Luck, Biochim. Biophys. Acta,
1974, 361, 11; (c) V. I. Ivanov, L. E. Minchenkova, A. K. Schyolkina
and A. I. Poletayev, Biopolymers, 1973, 12, 89.
19 (a) S. Hanlon, S. Brudno, T. T. Wu and B. Wolf, Biochemistry, 1975,
14, 1648; (b) B. Wolf and S. Hanlon, Biochemistry, 1975, 14, 1661;
(c) H. S. Charles and B. C. Jonathan, J. Am. Chem. Soc., 1997, 119,
10920.
115
1
(a) H. A. Ho, A. Naiari and M. Leclerc, Acc. Chem. Res., 2008, 41,
168; (b) S. W. Thomas, G. D. Joly and T. M. Swager, Chem. Rev.,
2007, 107, 1339; (c) C. Debouck and P. N. Goodfellow, Nat. Genet.,
1999, 21, 48; (d) M. J. Heller, Annu. Rev. Biomed. Eng., 2002, 4,
129.
120 20 M. Shortreed, R. Kopelman, M. Kuhn and B. Hoyland, Anal. Chem.,
1996, 68, 1414.
50
55
21 (a) S. M. Linn and R. J. Roberts, Nucleases, Cold Spring Harbor
Labortary Press: Cold Spring Harbor, NY, 1982. (b) J. Sambrook, E.
F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual,
2
(a) C. Chi, A. Mikhailovsky and G. C. Bazan, J. Am. Chem. Soc.,
2007, 129, 11134; (b) B. Liu and G. C. Bazan, Chem. Asian J., 2007,
2, 499; (c) B. S. Gaylord, A. J. Heeger and G. C. Bazan, J. Am.
Chem. Soc., 2003, 125, 896; (d) M. Yu, Y. Tang, F. He, S. Wang, D.
Zheng, Y. Li and D. Zhu, Macromol. Rapid Commun., 2006, 27,
1739; (e) X. F. Liu, Q. L. Fan and W. Huang, Biosens. Bioelectron.,
2011, 26, 2154; (f) W. Lv, N. Li, Y. Li and A. Xia, J. Am. Chem. Soc.,
125
2nd ed., Cold Spring Harbor Laboratory Press: Cold Spring Harbor,
New York, 1989.
6
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]