884
A. P. Ilyn et al. / Tetrahedron Letters 46 (2005) 881–884
7. Guandalini, L.; Martini, E.; Gualtieri, F.; Romanelli, M.
N.; Varani, K. ARKIVOC 2004, V, 286–300.
tals of compounds suitable for X-ray analysis were
grown from diethyl ether.
8. (a) Cheng, J.-F.; Chen, M.; Arrhenius, T.; Nadzan, A.
Tetrahedron Lett. 2002, 43, 6293–6295; (b) Rossen, K.;
Sager, J.; DiMichele, L. M. Tetrahedron Lett. 1997, 38,
3183–3186; (c) Illgen, K.; Nerdinger, S.; Fuchs, T.;
Friedrich, C.; Weber, L.; Herdtweck, E. Synlett 2004, 1,
53–56.
9. (a) Zhang, J.; Jacobson, A.; Rusche, J. R.; Herlihy, W. J.
Org. Chem. 1999, 64, 1074–1076; (b) Marcacchini, S.;
Pepino, R.; Torroba, T.; Miguel, D.; Garcia-Valverde, M.
Tetrahedron Lett. 2002, 43, 8591–8593.
In summary, we have developed a novel synthetic ap-
proach to the assembly of the pyrrolo- and indole[1,2-
a]pyrazin-1-one heterocycles based on a novel modifica-
tion of the Ugi four-component reaction. A distinctive
feature of our synthetic method is the use of bifunctional
azaheterocyclic reagents bearing a (2-oxoethyl)amino-
acetic acid fragment. Due to a wide spectrum of such re-
agents available, this reaction opens wide possibilities
for synthesis of novel or poorly studied annelated het-
erocyclic systems such as 1-oxo-1,2,3,4-tetrahydropyr-
rolo[1,2-a]pyrazine-3-carboxamide as well as other
heterocyclic scaffolds, which were not previously de-
scribed in literature.
10. Knight, D. W.; Redfern, A. L.; Gilmore, J. Synlett 1998, 7,
731–732.
11. Hudkins, R. L. Heterocycles 1995, 5, 1045–1049.
12. General procedure for preparation of compounds 6{1–
141}. The equimolar amounts of keto acid 3, the isonitrile
4, and the amine 5 were dissolved in methanol to an
approximate concentration of 1 M in each component.
The reaction mixture was stirred at 40 °C for 4–18 h. The
reaction was followed by TLC (5% MeOH in CH2Cl2). On
completion, the reaction mixture was cooled to rt, the
formed precipitate was filtered out and purified (if desired)
by recrystallization from diethyl ether of by chromato-
graphy on silica gel, eluting with a gradient of 0–10%
MeOH in CH2Cl2.
13. (a) Ugi, I. Isonitrile Chemistry; Academic: London, 1971;
(b) For reviews see: Armstrong, R. W.; Brown, D. S.;
Keating, T. A.; Tempest, P. A. In Combinatorial Chem-
istry Synthesis and Application; Wilson, S., Czarnik, A.
W., Eds.; John Wiley and Sons: New York, 1997; p 153;
(c) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.;
Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29,
123–131.
Acknowledgements
The authors would like thank Dr. Michail Yu. Antipin
for solving the X-ray structures. The authors would also
like thank Dr. Konstantin V. Balakin for help in prepa-
ration of the manuscript.
Supplementary data
Supplementary data associated with this article can be
compounds and crystallographic data for compounds
6{3} and 6{105} is available. The supplementary data
is available online with the paper in ScienceDirect.
14. Analytical spectral data for representative compounds 6.
1
Compound 6{5}: H NMR (DMSO + CCl4, 400 MHz) d
1.2–1.8 (m, 14H, cyclooctane), 1.5 (s, 9H, 3CH3), 2.2 (s,
3H, CH3), 3.2–3.33 (m, 1H, CH), 2.8 (s, 3H, CH3), 2.85–
2.96 (m, 1H, CH), 6.89 (d, 1H, J = 7.0 Hz, ArH), 7.21 (d,
1H, J = 7.0 Hz, ArH), 7.62 (s, 1H, ArH), 7.9–8.0 (m, 1H,
NH), 9.8 (s, 1H, NCO); 13C NMR (100 MHz, DMSO) d
21.4, 21.5, 21.7, 24.0, 24.1, 25.7, 27.2, 27.6, 31.8, 31.9, 49.9,
50.3, 51.2, 55.9, 64.8, 67.0, 104.9, 111.9, 116.5, 116.6,
128.2, 120.3, 130.3, 132.0, 169.1; HRMS m/z 483.2958
(M+). Compound 6{7}: 1H NMR (DMSO + CCl4,
400 MHz) d 1.1–2.0 (m, 14H, cycloheptane, CH2), 1.6 (s,
3H, CH3), 3.22 (s, 3H, CH3), 3.26–3.48 (m, 3H, CH2), 3.6–
3.71 (m, 1H, CH), 3.72–3.8 (m, 1H, CH2), 3.73 (s, 3H,
CH3), 4.0 (d, 1H, J = 5.4 Hz, CH2), 4.83 (d, 1H,
J = 5.4 Hz, CH2), 6.16–6.19 (t, 2H, J = 1.2 Hz, ArH),
6.88 (d, 1H, J = 2.4 Hz, ArH), 6.91 (d, 1H, J = 2.8 Hz,
ArH), 6.96 (d, 1H, J = 3.2 Hz, ArH), 6.98 (s, 1H, ArH),
7.35 (d, 1H, J = 7.4 Hz, ArH), 7.45 (d, 1H, J = 7.6 Hz,
NH); 13C NMR (100 MHz, DMSO) d 20.6, 23.7, 23.8,
27.7, 29.5, 33.9, 34.0, 49.6, 50.6, 52.5, 54.6, 55.4, 57.9, 59.7,
70.2, 70.3, 99.4, 108.1, 109.3, 111.6, 112.2, 119.6, 119.9,
123.0, 123.1, 128.6, 129.6, 154.7, 159.2; HRMS m/z
References and notes
1. (a) Cafieri, F.; Fattorusso, E.; Taglialatela-Scafati, O. J.
Nat. Prod. 1998, 61, 122–125; (b) Li, C.-J.; Schmitz, F. J.;
Kelly-Borges, M. J. Nat. Prod. 1998, 61, 387–389; (c)
Poullennec, K.; Romo, D. J. Am. Chem. Soc. 2003, 125,
6344–6345.
2. (a) Askew, B. C.; Bednar, R. A.; Bednar, B.; Claremon, D.
A.; Cook, J. J.; McIntyre, C. J.; Hunt, C. A.; Gould, R. J.;
Lynch, R. J.; Lynch, J. J., Jr.; Gaul, S. L.; Stranieri, M. T.;
Sitko, G. R.; Holahan, M. A.; Glass, J. D.; Hamill, T.;
Gorham, L. M.; Prueksaritanont, T.; Baldwin, J. J.;
Hartman, G. D. J. Med. Chem. 1997, 40, 1779–1788; (b)
Askew, B. C.; McIntyre, C. J.; Hunt, C. A.; Claremon, D.
A.; Gould, R. J.; Lynch, R. J.; Armstrong, D. J. Bioorg.
Med. Chem. Lett. 1995, 5, 475–480.
3. Tapia, R. A.; Prieto, Y.; Pautet, F.; Domard, M.;
Sarciron, M.-E.; Walchshofer, N.; Fillion, H. Eur. J.
Org. Chem. 2002, 23, 4005–4010.
4. Dumas, D. J. J Org. Chem. 1988, 53, 4650–4653.
5. (a) For example: Bentley, J. M.; Hebeisen, P.; Muller, M.;
Richter, H.; Roever, S.; Mattei, P.; Taylor, S. PCT Int.
Appl. WO 2001-EP8520, 20010724, 2002; (b) Menta, E.;
Nicotra, F.; Pescalli, N.; Spinelli, S. PCT Int. Appl., WO
2000-EP7418, 20000731, 2001.
1
507.2976 (M+). Compound 6{99} : H NMR (DMSO +
CCl4, 400 MHz) d 0.7 (t, 3H, J = 8.2 Hz, CH3), 1.0–1.13
(q, 2H, J = 8.3 Hz, CH2), 1.15–1.2 (m, 1H, CH), 1.48 (s,
1H, CH), 2.97–3.11 (q, 2H, J = 7.8 Hz, CH2), 3.95–4.2 (d,
d, 2H, J = 7.4 Hz, CH2), 4.9–5.0 (d, 1H, J = 7.5 Hz, CH2),
5.33–5.49 (d, 1H, J = 7.5 Hz, CH2) 6.4 (d, 1H, J = 8.2 Hz,
ArH), 6.47 (2d, 1H, J = 8.4Hz, ArH), 6.52 (d, 1H,
J = 8.1 Hz, ArH), 6.74 (d, 1H, J = 8.1 Hz, ArH), 7.2–
7.36 (m, 4H, ArH), 7.6 (d, 1H, J = 8.2 Hz, ArH); HRMS
m/z 454.1891 (M+).
6. Abbiati, G.; Beccalli, E. M.; Broggini, G.; Zoni, C. J. Org.
Chem. 2003, 68, 7625–7628.