2754
P. S. Piispanen, P. M. Pihko / Tetrahedron Letters 46 (2005) 2751–2755
also: (b) Bartoli, G.; Cimarelli, C.; Marcantoni, E.;
Palmieri, G.; Petrini, M. J. Org. Chem. 1994, 59, 5328–
5335.
(ESI+) calcd for C11H20NO4 (M+H): 230.1392, found:
230.1398.
9. Hashiguchi, S.; Kawada, A.; Natsugari, H. J. Chem. Soc.,
Perkin Trans. 1 1991, 2435–2444.
3.5. N-Benzyl aspartic acid (6)
10. Senanayake, C. H.; Fang, K.; Grover, P.; Bakale, R. P.;
Vandenbassche, C. P.; Wald, S. A. Tetrahedron Lett. 1999,
40, 819–822.
Yield: 19% (Method A); Yield: 62% (Method B); white
crystals; mp 193.7–194.6 ꢁC (from water/ethanol); lit.18
mp 195 ꢁC; IR (KBr) 3430, 3070, 2992, 2932, 2860,
11. Roundhill, D. M. Chem. Rev. 1992, 92, 1–27.
12. Muller, T. M.; Beller, M. Chem. Rev. 1998, 98, 675–703.
1721, 1633, 1578, 1409 cmÀ1 1H NMR (400 MHz,
;
¨
D2O) d 7.18 (m, 5H), 4.05 (d, 1H, J = 13 Hz), 3.99
(d, 1H, J = 13 Hz), 3.65 (dd, 1H, J = 5, 7 Hz), 2.69
(dd, 1H, J = 5, 18 Hz), 2.64 (dd, 1H, J = 7, 18 Hz); 13C
NMR (400 MHz, D2O) d 174.0, 171.9, 134.2, 130.4,
129.9, 129.7, 129.3 (2C), 57.1, 50.5, 34.1 (neutral com-
pound); 13C NMR (400 MHz, D2O) d 177.3, 173.1,
135.3, 131.0, 129.7, 129.6, 129.3, 120.9, 58.7, 49.9, 35.6
(monolithium salt).
13. Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98,
1689–1708.
14. For examples, see: (a) Wabnitz, T.; Spencer, J. B. Org.
Lett. 2003, 5, 2141–2144; (b) Zilkha, A.; Rivlin, J. J. Org.
Chem. 1958, 23, 96–98.
15. For a review on aspartases, see: Viola, R. E. Adv.
Enzymol. Relat. Areas Mol. Biol. 2000, 74, 295–341.
16. Zilkha, A.; Bachi, M. D. J. Org. Chem. 1959, 24, 1096–
1098, See also Ref. 34.
17. Pfau, M. Bull. Soc. Chim. Fr. 1967, 4, 1117–1125.
18. Frankel, M.; Liwschitz, Y.; Amiel, Y. J. Am. Chem. Soc.
1953, 75, 330–332.
3.6. N-(2-Hydroxyethyl) aspartic acid (7)
19. Liwschitz, A.; Singerman, A. J. Chem. Soc. C 1966, 1200–
1202.
20. Gorelov, I. P.; Samsonov, A. P.; NikolÕskii, V. M.; Babich,
V. A.; Svetogorov, Yu. E.; Smirnova, T. I.; Malakhaev, E.
D.; Kozlov, Yu. M.; Kapustnikov, A. I. J. Gen. Chem.
USSR (Engl. Transl.) 1979, 49, 573.
21. Aksela, R.; Renvall, I.; Paren, A. PCT Int. Appl. WO
1997/9745396. Chem. Abstr. 1997, 128, 49699.
22. Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.;
Sambri, L.; Torregiani, E. J. Org. Chem. 2001, 66, 9052–
9055.
Yield: 35% (Method A), 76% (Method B); off-white
crystals; mp > 280 ꢁC dec (from water/ethanol; phase
transition occurs at 230–235 ꢁC); lit.35 mp 231–233 ꢁC;
IR (KBr) 3420, 3244, 2997, 2930, 2878, 1642, 1413,
1
719 cmÀ1; H NMR (400 MHz, D2O) d 3.88 (m, 2H),
3.86 (m, 1H), 3.29 (m, 1H), 3.19 (m, 1H), 2.84
(dd, 1H, J = 4, 18 Hz), 2.71 (dd, 1H, J = 9, 18 Hz); 13C
NMR (400 MHz, D2O) d 35.3, 48.2, 56.8, 59.4, 173.0,
177.3 (neutral compound); 13C NMR (400 MHz, D2O)
d 36.2, 48.5, 57.5, 59.9, 174.2, 178.0 (monolithium salt).
23. Hoffmann, U.; Jacobi, B. U.S. Patent, 1935, 2.017.537.
Chem. Abstr. 1935, 29, 60908.
24. van Westrenen, J.; van Haveren, J.; Alblas, F. J.;
Hoefnagel, M. A.; Peters, J. A.; van Bekkum, H. Recl.
Trav. Chim. Pays-Bas 1990, 109, 474–478.
Acknowledgements
Financial support from Kemira Ltd is gratefully
acknowledged. We thank Drs. Jari Koivisto and Juho
Helaja (both at HUT) for NMR assistance.
´
´
25. Maderova, J.; Pavelcık, F.; Marek, J. Acta Crystallogr.,
Sect. E: Struct. Rep. Online 2002, E58, 469–470.
26. Madsen, D.; Pattison, P. Acta Crystallogr., Sect. C: Cryst.
Struct. Commun. 2000, C56, 1157–1158.
27. Reppe, W.; Ufer, H. German Patent DE 697802, 1940.
Chem. Abstr. 1941, 35, 40245.
Supplementary data
´
´
28. Arsenijevic, L.; Arsenijevic, V.; Damanski, A. F. C.R.
Acad. Sc. Fr. 1963, 265, 4039–4040.
Copies of H and 13C NMR spectra of all products are
1
29. Additions of long, straight-chain alkylamines have been
reported in the patent literature. For an example, see:
Yamamoto, A.; Kobayashi, Y.; Mori, Y. Japanese Patent,
2000, 2000.136.172. Chem. Abstr. 2000, 132, 336131.
30. Similar observations have been made earlier by Liwschitz
and Irsay (quoted by Zilcha and Bachi, see Footnote 5 in
Ref. 16). They note that ‘‘. . . reaction of other amines with
maleic acid either in aqueous solution or otherwise did not
give the required N-alkyl-aspartic acid but led to the
formation of amine salts of maleic acid or to unidentified
products.’’
31. The solvents screened included DMF, tetrabutylurea,
tetramethylurea, tri-n-butylphosphate, N-methylpyrrol-
idone and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimid-
inone (DMPU).
32. Isomerization of a 0.1 M solution of maleic acid into
fumaric acid was attempted at 125 ꢁC in DMSO for 72 h.
Less than 1% isomerization could be detected during this
included. Supplementary data associated with this arti-
References and notes
1. Heimgartner, H. Angew. Chem., Int. Ed. Engl. 1991, 30,
238–264.
2. Williams, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889–
917.
3. Duthaler, R. O. Tetrahedron 1994, 50, 1539–1650.
4. Wirth, T. Angew. Chem., Int. Ed. 1997, 36, 225–227.
5. Gibson, S. E.; Guillo, N.; Tozer, M. J. Tetrahedron 1999,
55, 585–615.
6. Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron: Asym-
metry 1998, 9, 3517–3599.
7. Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron: Asym-
metry 2000, 11, 645–732.
8. For recent reviews on the synthesis of b-amino acids, see:
(a) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991–8035;
Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290–4299; see
period.
A
control experiment with added NaBr
(200 mol %) gave identical results. A mixture of maleic
acid (3 mmol), n-hexylamine (1 mmol) and NaBr (6 mmol)
in DMSO did not give any reaction even at +125 ꢁC except
for the slow formation of n-hexylmaleamide.