Communication
Organic & Biomolecular Chemistry
thesis of allylic azides, primary amines, secondary amines, ter- 12 L. Rokhum and G. Bez, J. Chem. Sci., 2012, 124, 687–691.
tiary amines, and even quaternary ammonium salts. Sodium 13 (a) J. Le Bras and J. Muzart, Tetrahedron Lett., 2011, 52,
iodide is an excellent additive, which improved yields for all
reactions. Reaction yields reported herein compare favourably
with known strategies based on allylic C–H activation.
5217–5219; (b) G. Hirata, H. Satomura, H. Kumagae,
A. Shimizu, G. Onodera and M. Kimura, Org. Lett., 2017,
19, 6148–6151.
Importantly, our reaction protocol affords only linear (E) allylic 14 D. A. Khrakovsky, C. Tao, M. W. Johnson, R. T. Thornbury,
products. We believe this new methodology provides a milder,
less expensive, more selective, and more straightforward
S. L. Shevick and F. D. Toste, Angew. Chem., Int. Ed., 2016,
55, 6079–6083.
alternative for rapidly building nitrogen-containing organic 15 A. B. Weinstein and S. S. Stahl, Angew. Chem., Int. Ed.,
scaffolds, a significant consideration in synthesis of useful
2012, 51, 11505–11509.
molecules.
16 (a) S. A. Reed, A. R. Mazzotti and M. C. White, J. Am. Chem.
Soc., 2009, 131, 11701–11706; (b) R. Ma and M. C. White,
J. Am. Chem. Soc., 2018, 140, 3202–3205.
Conflicts of interest
17 A. A. Ott, M. H. Packard, M. A. Ortuño, A. Johnson,
V. P. Suding, C. J. Cramer and J. J. Topczewski, J. Org.
Chem., 2018, 83, 8214–8224.
There are no conflicts to declare.
18 M. R. Porter, R. M. Shaker, C. Calcanas and
J. J. Topczewski, J. Am. Chem. Soc., 2018, 140, 1211–
1214.
Acknowledgements
19 A. S. Carlson, C. Calcanas, R. M. Brunner and
J. J. Topczewski, Org. Lett., 2018, 20, 1604–1607.
20 A. A. Ott, C. S. Goshey and J. J. Topczewski, J. Am. Chem.
Soc., 2017, 139, 7737–7740.
21 P. P. Goswami, V. P. Suding, A. S. Carlson and
J. J. Topczewski, Eur. J. Org. Chem., 2016, 4805–4809.
22 D. Craig, J. W. Harvey, A. G. O’Brien and A. J. P. White, Org.
Biomol. Chem., 2011, 9, 7057–7061.
We are grateful to the University of Texas at Arlington for sup-
porting this work. In addition, acknowledgment is made to the
Donors of the American Chemical Society Petroleum Research
Fund for partial support of this research (grant # 58261-ND1).
Furthermore, the authors are thankful to the Shimadzu Center
for MS data collection and the NSF grants (CHE-0234811 and
CHE-0840509) for additional instrumentation.
23 A. K. Feldman, B. Colasson, K. B. Sharpless and
V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 13444–13445.
24 (a) E. Barragan and A. Bugarin, J. Org. Chem., 2017, 82,
1499–1506; (b) X. Huang, B. Fulton, K. White and
A. Bugarin, Org. Lett., 2015, 17, 2594–2597.
25 (a) N. Kutsumura, K. Niwa and T. Saito, Org. Lett., 2010, 12,
3316–3319; (b) N. Kutsumura, S. Toguchi, M. Iijima,
O. Tanaka, I. Iwakura and T. Saito, Tetrahedron, 2014, 70,
8004–8009.
Notes and references
1 S. Nag and S. Batra, Tetrahedron, 2011, 67, 8959–9061.
2 E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88, 297–
368.
3 D. Askin, C. Angst and S. Danishefsky, J. Org. Chem., 1985,
50, 5005–5007.
4 (a) S. Bräse, C. Gil, K. Knepper and V. Zimmermann,
Angew. Chem., Int. Ed., 2005, 44, 5188–5240; (b) J. Aube and 26 S. H. Kim, Z. Jin and P. L. Fuchs, Tetrahedron Lett., 1995,
G. L. Milligan, J. Am. Chem. Soc., 1991, 113, 8965–8966; 36, 4537–4538.
(c) R. Liu, O. Gutierrez, D. J. Tantillo and J. Aube, J. Am. 27 T. B. Phan and H. Mayr, J. Phys. Org. Chem., 2006, 19, 706–
Chem. Soc., 2012, 134, 6528–6531.
713.
5 S. Chiba, Synlett, 2011, 21–44.
28 W. K. Walker, D. L. Anderson, R. W. Stokes, S. J. Smith and
D. J. Michaelis, Org. Lett., 2015, 17, 752–755.
29 R. N. Shakhmaev, A. S. Sunagatullina and V. V. Zorin,
Russ. J. Org. Chem., 2015, 51, 95–97.
6 Y. Zhao, Y. Zhou, C. Zhang, D. Li, P. Sun, J. Li, H. Wang,
J. Liu and J. Qu, J. Org. Chem., 2018, 83, 2858–2868.
7 (a) Organic Azides: Synthesis and Applications, ed. S. Bräse
and K. Banert, Wiley, Chichester, 2010; (b) Y. Nishina, 30 For additional data and details of the proposed mecha-
J. Morita and B. Ohtani, RSC Adv., 2013, 3, 2158–2162. nism, please see the ESI.†
8 (a) H. Chen, W. Yang, W. Wu and H. Jiang, Org. Biomol. 31 P. G. Reddy, T. V. Pratap, G. D. K. Kumar, S. K. Mohanty
Chem., 2014, 12, 3340–3343; (b) P. Surendra Reddy, V. Ravi
and B. Sreedhar, Tetrahedron Lett., 2010, 51, 4037–4041.
9 M. Rueping, C. Vila and U. Uria, Org. Lett., 2012, 14, 768–
771.
10 B. V. Rokade, K. Gadde and K. R. Prabhu, Eur. J. Org.
Chem., 2015, 2706–2717.
and S. Baskaran, Eur. J. Org. Chem., 2002, 3740–3743.
32 Y. Uozumi, T. Suzuka, R. Kawade and H. Takenaka, Synlett,
2006, 2109–2113.
33 N. Viswanadh, P. Mujumdar, M. Sasikumar, S. S. Kunte
and M. Muthukrishnan, Tetrahedron Lett., 2016, 57, 861–
863.
11 G. Srinu and P. Srihari, Tetrahedron Lett., 2013, 54, 2382– 34 X. Sun, X. Li, S. Song, Y. Zhu, Y.-F. Liang and N. Jiao,
2385.
J. Am. Chem. Soc., 2015, 137, 6059–6066.
9358 | Org. Biomol. Chem., 2018, 16, 9354–9358
This journal is © The Royal Society of Chemistry 2018