J. K. Pokorski et al. / Tetrahedron Letters 46 (2005) 915–917
917
1.2
1.2
1
(B)
(A)
1
Cooling
Heating
0.8
0.8
0.6
0.4
0.2
0
Cooling
Heating
0.6
0.4
0.2
0
20
30
40
Temperature
70
0
10
50
60
80
0
10
20
30
40
50
60
70
Temperature (°C)
Figure 2. Heating and cooling curves of tcprPNA–oligonucleotide complexes. (A) tcprPNA–RNA, (B) tcprPNA2–DNA.
propane constraint is more compatible in the Hoogsteen
strand of a PNA2DNA triplex than in the Watson–
Crick strand. Unfortunately, no triplex melting was ob-
served in the aegPNA control, so no direct comparison
is currently possible.
ysis. Mass spectra to characterize PNAs, 1H spectra
for all new compounds, and Job plot are also included.
Supplementary data associated with this article can be
In conclusion, we have made the first PNA with an
(S,S)-trans-cyclopropane in the backbone, and we pres-
ent initial data indicating how this constraint may be
useful to the preorganization of a PNA for oligonucleo-
tide binding. A central premise in our research is that in
order for a carbocyclic ring to promote PNA binding to
oligonucleotides, both ring size and stereochemistry
must restrict the PNA to access only the range of dihe-
dral angles necessary for binding, while excluding
conformations that are irrelevant to duplex formation.
Fromthis work, there are indications that the range of
dihedral angles accessible to a cyclopropane ring are
more compatible in the Hoogsteen strand of a PNA2D-
NA triplex than in the Watson–Crick strand. Future
work will focus on examination of tcprPNA in
Hoogsteen interactions within a PNA–tcprPNA–DNA
triplex.
References and notes
1. Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. B.
Science 1991, 254, 1497.
2. (a) Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624; (b)
Nielsen, P. E. Mol. Biotechnol. 2004, 26, 233.
3. Ganesh, K. N.; Nielsen, P. E. Curr. Org. Chem. 2000, 4,
931.
4. Kumar, V. A. Eur. J. Org. Chem. 2002, 2021, and
references therein.
5. (a) Lagriffoule, P.; Wittung, P.; Eriksson, M.; Jensen, K.
K.; Norden, B.; Buchardt, O.; Nielsen, P. E. Chem. Eur. J.
1997, 3, 912; (b) Govindaraju, T.; Gonnade, R. G.;
Bhadbhade, M. M.; Kumar, V. A.; Ganesh, K. N. Org.
Lett. 2003, 5, 3013; (c) Govindaraju, T.; Kumar, V. A.;
Ganesh, K. N. J. Org. Chem. 2004, 69, 1858; (d)
Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. Chem.
Commun. 2004, 860; (e) Govindaraju, T.; Kumar, V. A.;
Ganesh, K. N. J. Org. Chem. 2004, 69, 5725.
6. (a) Myers, M. C.; Witschi, M. W.; Larionova, N. V.;
Franck, J. M.; Haynes, R. D.; Hara, T.; Grajkowski, A.;
Appella, D. H. Org. Lett. 2003, 5, 2695; (b) Pokorski, J.
K.; Witschi, M. A.; Purnell, B. L.; Appella, D. H. J. Am.
Chem. Soc. 2004, 126, 15067.
7. Franck, J. M.; Appella, D. H. Unpublished results.
8. (a) Misumi, A.; Iwanaga, K.; Furuta, K.; Tamamoto, H.
J. Am. Chem. Soc. 1985, 107, 3343; (b) Furuta, K.;
Iwanaga, K.; Yamamoto, H. Org. Synth. 1989, 67, 76.
9. Koch, T.; Hansen, H. F.; Andersen, P.; Larsen, T.; Batz,
H. G.; Otteson, K.; Orum, H. J. Peptide Res. 1997, 49, 80.
10. Job, P. Ann. Chim. 1928, 9, 113.
Acknowledgements
We gratefully acknowledge financial support from
Northwestern UniversityÕs Weinberg College of Arts
and Sciences, Department of Chemistry, and the VP of
Research; and the American Chemical Society Petro-
leumResearch Fund. Jon Pokorski was supported by
Northwestern UniversityÕs NIH Biotechnology Training
Grant (T32 GM008449).
11. (a) Pilch, D. S.; Levenson, C.; Shafer, R. H. Proc. Natl.
Acad. Sci. 1990, 87, 1942; (b) Griffith, M. C.; Risen, L. M.;
Greig, M. J.; Lesnik, E. L.; Sprankle, K. G.; Griffey, R.
H.; Kiely, J. S.; Freier, S. M. J. Am. Chem. Soc. 1995, 117,
831.
Supplementary data
Procedures for synthesis of tcprPNA monomers, solid
phase synthesis of all PNAs, and thermal melting anal-