ACS Catalysis
Page 8 of 10
1
2
3
4
5
6
7
8
macother. 2000, 20, 1-12. (c) Sniezek, M.; Stecko, S.; Panfil, I.;
silica gel type 9385 230-400 mesh or Merck Al2O3 90 ac-
tive neutral, TLC: Merck silica gel 60, 0.25 mm or Al2O3 60
F254 neutral. Components were visualized by UV, Ninhy-
drin or I2 staining. 1H- and 13C NMR spectra were recorded
on a Varian AMX400 (400 and 100.59 MHz, respectively)
using CDCl3, CD3OD, or CD2Cl2 as solvent. Chemical shift
values are reported in ppm with the solvent resonance as
Furman, B.; Chmielewski, M. J. Org. Chem. 2013, 78, 7048. (d)
Brands, K. M. J.; Payack, J. F.; Rosen, J. D.; Nelson, T. D.; Cande-
lario, A.; Huffman, M. A.; Zhao, M. M.; Li, J.; Craig, B.; Song, Z. J.;
Tschaen, D. M.; Hansen, K.; Devine, P. N.; Pye, P. J.; Rossen, K.;
Dormer, P. G.; Reamer, R. A.; Welch, C. J.; Mathre, D. J.; Tsou, N.
N.; McNamara, J. M.; Reider, P. J. J. Am. Chem. Soc. 2003, 125,
2129-2135.
(2) (a) Shi, S.-L.; Buchwald, S. L. Nature Chem. 2015, 7, 38-44. (b)
Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc., 2013,
135, 15746-15749. (c) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M.
Angew. Chem. Int. Ed. 2013, 52, 10830-10834. (d) Muller, T. E.;
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008,
108, 3795-3892. (e) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36,
1407-1420.
1
the internal standard (CDCl3: 7.26 for H, 77.00 for 13C;
CD3OD: 3.31 for 1H, 49.00 for 13C; CD2Cl2: 5.32 for 1H, 53.84
for 13C). Data are reported as follows: chemical shifts,
multiplicity (s = singlet, d = doublet, t = triplet, q = quar-
tet, br. = broad, m = multiplet), coupling constants (Hz),
and integration.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Representative Procedures Procedure of amination
of 4-methoxybenzyl alcohol (1b) with morpholine (2a)
provides 3b: An oven-dried 20 ml Schlenk tube, equipped
with stirring bar, was charged with 4-methoxybenzyl
alcohol (2 mmol, 0.276 g), iron complex Cat 1 (4 mol %, 8
mg) and Me3NO (8 mol %, 3 mg) under air. Then the
Schlenk tube was subsequently connected to an argon
line and a vacuum-argon exchange was performed three
times. Morpholine (0.5 mmol, 0.044 g), and toluene (sol-
vent, 2 ml) were charged under an argon stream followed
by addition of 95 – 105 mg activated molecular sieves 4A.
The Schlenk tube was capped and the mixture was rapidly
stirred at room temperature for 1 min, then was placed
(3) Smith, M. B., March, J. March’s advanced organic chemistry:
reactions, mechanisms, and structure; chapter 10, 6th ed., John
Wiley & Sons, Inc.: Hoboken, New Jersey, 2007.
(4) (a) Pisiewicz, S.; Stemmler, T.; Surkus, A.-E.; Junge, K.; Beller,
M. ChemCatChem 2015, 7, 62-64. (b) Kolesnikov, P. N.; Yagafa-
rov, N. Z.; Usanov, D. L.; Maleev, V. I.; Chusov, D. Org. Lett.
2015, 17, 173-175. (c) Guyon, C.; Da Silva, E.; Lafon, R.; Metay, E.;
Lemaire, M. RSC Adv. 2015, 5, 2292-2298. (d) Zhou, S.; Fleischer,
S.; Jiao, H.; Junge, K.; Beller, M. Adv. Synth. Catal. 2014, 356, 3451-
3455. (e) Chusov, D.; List, B. Angew. Chem. Int. Ed. 2014, 53, 5199-
5201. (f) Pagnoux-Ozherelyeva, A.; Pannetier, N.; Mbaye, M. D.;
Gaillard, S.; Renaud, J.-L. Angew. Chem. Int. Ed. 2012, 51, 4976-
4980.
(5) Benzyl alcohol is produced naturally by many plants, see: The
Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologi-
cals, 11th ed., Merck, 1989, ISBN 091191028X, 1138.
o
into a pre-heated oil bath at 135 C and stirred for 18 h.
The reaction mixture was cooled down to room tempera-
ture and the crude mixture was filtered through celite,
eluted with ethyl acetate, and concentrated in vacuo. The
residue was purified by flash column chromatography
(SiO2, CH2Cl2/EtOAc 80:20 to 50:50) to provide the pure
amine product 3b (0.091 g, 88 % isolated yield). For char-
acterization data, see the Supporting information.
(6) Benzyl alcohols may be produced by hydrogenation of benzyl
aldehydes which derivate from oxidative depolymerization of
lignin. See: (a) Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl,
S. S. J. Am. Chem. Soc. 2013, 135, 6415-6418. (b) Deuss, P. J.; Barta,
K.; de Vries, J. G. Catal. Sci. Technol. 2014, 4, 1174-1196.
(7) Industrial production of amines mostly based nucleophilic
substitution mechanism. For example, methylamines can be
o
produced under 350-500 C and 15-30 bar pressure using alumi-
num-based heterogeneous catalyst from ammonia and metha-
nol. See: Weissermel, K.; Arpe, H.-J. Industrial Organic Chemis-
try, Fourth Completely Revised Edition, Wiley-VCH: Weinheim,
2003, p. 51.
ASSOCIATED CONTENT
Supporting Information.
Experimental details and NMR spectra (1H, 13C), HRMS, of all
reaction products are include in the supporting information.
This material is available free of charge via the Internet at
(8) One promising example shown the direct amination of alco-
hols catalyzed by iron-amino acid through nucleophilic substitu-
o
tion pathway with relative milder condition (160 – 200 C). See:
Zhao, Y.; Foo, S. W.; Saito, S. Angew. Chem. Int. Ed. 2011, 50,
3006-3009.
AUTHOR INFORMATION
Corresponding Author
(9) (a) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv.
Synth. Catal. 2007, 349, 1555-1575. (b) Nixon, T. D.; Whittlesey,
M. K.; Williams, J. M. J. Dalton Trans., 2009, 753-762. (c) Wat-
son, A. J. A.; Williams, J. M. J. Science 2010, 329, 635-636. (d)
Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611-1641.
(e) Bahn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.;
Beller, M. ChemCatChem 2011, 3, 1853-1864. (f) Dobereiner, G. E.;
Crabtree, R. H. Chem. Rev. 2010, 110, 681-703. (g) Gunanathan, C.;
Milstein, D. Science 2013, 341, 1229712.
(10) (a) Trost, B. M. Science 1983, 219, 245-250. (b) Trost, B. M.
Science 1991, 254, 1471-1477.
(11) Grigg, R., Mitchell, T. R. B., Sutthivaiyakit, S.; Tongpenyai, N.
J. Chem. Soc., Chem. Commun. 1981, 611-612.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The authors thank the Ministry of Education, Culture and
Science (Gravitation Program 024.001.035) for financial sup-
port. T.Y. would like to thank Dr. Giovanni Bottari for syn-
thesizing 2,5-bis(hydroxymethyl)furan (12a), and thank Dr.
Peter Deuss for helpful discussions during manuscript prepa-
ration (both from University of Groningen).
(12) Watanabe, Y.; Tsuji, Y.; Ohsugi, Y. Tetrahedron Lett. 1981, 22,
2667-2670.
(13) Selected examples: (a) Fujita, K.-i.; Yamamoto, K.; Yamagu-
chi, R. Org. Lett. 2002, 4, 2691-2694. (b) Fujita, K.-i.; Fujii, T.;
Yamaguchi, R. Org. Lett. 2004, 6, 3525-3528. (c) Gnanamgari, D.;
REFERENCES
(1) (a) Lednicer, D. The organic chemistry of drug synthesis; vol
7;. John Wiley & Sons: New Jersey, 2008. (b) Jann, M. W. Phar-
8
ACS Paragon Plus Environment