Chemistry Letters Vol.34, No.1 (2005)
57
250000
600
500
400
300
200
100
0
was also added to the trisaryne to offer 32% yield of 11, contain-
ing three benzodisilocine moieties.
In conclusion, we have disclosed the synthesis of the tris-
aryne equivalent and its utilization for assembling diverse PAHs
via the Diels–Alder reaction or the palladium-catalyzed hexasi-
lylation. Further studies on synthetic application of the trisaryne
equivalent to the construction of other PAHs are in progress.
← (i)
200000
← (iii)
150000
100000
50000
0
↑
(iv)
←
(v)
←
(ii)
This work was financially supported in part by the Sasakawa
Scientific Research Grant from The Japan Science Society. We
also thank Ms. Mihoko Yanai, the Natural Science Center
for Basic Research and Development (N-BARD) Hiroshima
University, for HRMS measurement.
200
300
400
500
600
Wavelength / nm
References and Notes
Figure 1. Absorption: (i) = 8, (ii) = DPA, Fluorescence:
(iii) = 8 (ꢃex ¼ ꢃmax), (iv) = 8 (ꢃex ¼ 350 nm), (v) = DPA
(ꢃex ¼ 350 nm);
absorption and emission maxima of 8 were somewhat red-shift-
ed from those of DPA probably owing to the elongated conjuga-
tion in 8, while the quantum yield of 8 (ꢀF ¼ 0:44) was lower
than that of DPA (ꢀF ¼ 0:90).
1
2
H. Pellissier and M. Santelli, Tetrahedron, 59, 701 (2003).
a) P. R. Ashton, U. Girreser, D. Giuffrida, F. H. Kohnke, J. P.
Mathias, F. M. Raymo, A. M. Z. Slawin, J. F. Stoddart, and
D. J. Williams, J. Am. Chem. Soc., 115, 5422 (1993). b) B.
Konig, B. Knieriem, K. Rauch, and A. de Meijere, Chem.
¨
¨
Ber., 126, 2351 (1993). c) M. Loffler and A. D. Schluter, Synlett,
¨
1994, 75. d) A. Winling and R. A. Russell, J. Chem. Soc., Perkin
Trans. 1, 1998, 3921. e) I. I. Schuster, L. Cracium, D. M. Ho,
and R. A. Pascal, Jr., Tetrahedron, 58, 8875 (2002). f) H. M.
Duong, M. Bendikov, D. Steiger, Q. Zhang, G. Sonmez, J.
Yamada, and F. Wudl, Org. Lett., 5, 4433 (2003). g) J. Lu,
D. M. Ho, N. J. Vogelaar, C. M. Kraml, and R. A. Pascal, Jr.,
J. Am. Chem. Soc., 126, 11168 (2004).
The trisaryne equivalent was found to be applicable to the
palladium-catalyzed coupling reaction with cyclic disilanes
(Scheme 3).11 Thus, treatment of 1 with a five-membered cyclic
disilane, 1,1,2,2-tetramethyl-1,2-disilacyclopentane or 1,1,2,2-
tetramethyl-1,2-(1,8-naphthylene)disilane, in the presence of a
palladium–t-OcNC complex provided the corresponding hexasi-
lylated products (9 or 10) in 38 or 16% yield, where all triple
bonds were inserted into the Si–Si ꢁ-bond. A six-membered cy-
clic disilane, 1,1,2,2-tetramethyl-1,2-(2,20-biphenylene)disilane,
3
4
a) A. J. Berresheim, M. Muller, and K. Mullen, Chem. Rev., 99,
¨ ¨
1747 (1999). b) M. D. Watson, A. Fechtenkotter, and K. Mullen,
Chem. Rev., 101, 1267 (2001).
1; 1H NMR (CDCl3) ꢂ 0.43 (s, 27 H), 7.47 (d, J ¼ 8:4 Hz, 3 H),
7.68 (s, 3 H), 7.70 (dd, J ¼ 8:4, 2.4 Hz, 3 H), 7.77 (d, J ¼ 2:4
Hz, 3 H); 13C NMR (CDCl3) ꢂ ꢂ0:8, 118.5 (q, J ¼ 320 Hz),
120.1, 125.9, 130.2, 133.5, 135.2, 140.0, 141.5, 154.8; Anal.
Calcd for C36H39O9F9S3Si3: C, 44.71; H, 4.06%. Found: C,
44.73; H, 3.99%.
¨
¨
KF
18-Crown-6
Pd(OAc) (12 mol%)
2
t-OcNC (36 mol%)
R
SiMe
SiMe
2
2
+
1
Hexasilylated product
THF, rt
n
5
6
K. Miyazawa, T. Inukai, H. Inoue, S. Saitou, and K. Ono,
Jpn. Kokai Tokkyo Koho 63048254 (1988); Chem. Abstr.,
109, 120286p (1988).
n: 1, 2
´
a) A. Jutand and S. Negri, Eur. J. Org. Chem., 1998, 1811. b) Y.
Me Si
2
Me Si
2
Yamamoto, C. Hideshima, Y. Nagano, and M. Tashiro, J. Chem.
Res., Synop., 28, 266 (1996).
SiMe
SiMe
2
2
7
8
Y. Himeshima, T. Sonoda, and H. Kobayashi, Chem. Lett., 1983,
1211.
Me
Si
Me
Si
2
2
A THF solution (1.0 mL) of 1 (0.195 g, 0.20 mmol), a 1,3-diene
(0.90 mmol), 18-Crown-6 (0.334 g 1.26 mmol) and KF (0.071 g,
1.23 mmol) was stirred for the time specified in Scheme 2.
The mixture was diluted with ethyl acetate, washed with brine
and concentrated. The residue was purified by GPC to give
the corresponding product.
SiMe
SiMe
2
2
Si
Me2
Si
Me
2
Me Si
Me Si
2
2
9: 38% yield (24 h)
10: 16% yield (24 h)
1
9
8; H NMR (50 ꢁC) (CDCl3) ꢂ 7.34 (dd, J ¼ 6:8, 3.4 Hz, 6 H),
7.43–7.62 (m, 36 H), 7.70 (dd, J ¼ 6:8, 2.9 Hz, 6 H), 7.74
(dd, J ¼ 8:8, 1.9 Hz, 3 H), 7.90 (s, 3 H); 13C NMR (50 ꢁC)
(CDCl3) ꢂ 124.8, 125.1, 125.2, 125.3, 125.7, 127.0, 127.6,
127.67, 127.72, 128.5, 129.2, 130.0, 130.2, 130.5, 131.3,
131.4, 137.1, 137.4, 137.6, 138.9, 139.1, 142.5; HRMS (FAB)
Calcd for C84H54: 1062.4226, Found 1062.4240.
Me Si
2
SiMe
2
Me
Si
2
SiMe
2
10 a) G. Witting, E. Knauss, and K. Neithammer, Justus Liebigs
Ann. Chem., 630, 10 (1960). b) G. S. Reddy and M. V. Bhatt,
Tetrahedron Lett., 21, 3627 (1980).
SiMe
2
Me Si
2
11 a) H. Yoshida, J. Ikadai, M. Shudo, J. Ohshita, and A. Kunai, J.
Am. Chem. Soc., 125, 6638 (2003). b) H. Yoshida, K. Tanino, J.
Ohshita, and A. Kunai, Angew. Chem., Int. Ed., 43, 5052 (2004).
11: 32% yield (24 h)
Scheme 3.
Published on the web (Advance View) December 4, 2004; DOI 10.1246/cl.2005.56