G.-H. Chu et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5114–5119
7. Unpublished data.
5119
Two representative compounds from these two novel ser-
ies of constrained aryloxyacetamides, chroman-2-carbox-
amide 19-R and 2,3-dihydrobenzofuran-2-carboxamide
23-S, the two diastereomerically pure compounds both
showing high and selective j binding affinity (Ki = 2.6
and 1.2 nM) and low CYP2D6 inhibitory activity
(IC50 = 4.2 and 4.5 lM)were evaluatedfor activityin vivo
nociceptive assays. Compounds 19-R and 23-S displayed
potent analgesic effects, producing 95% and 88% antino-
ciception at 300 lg given intrapaw (sc injection in dorsal
surface of paw), respectively, in the late phase formalin-
induced flinching assay.19 Compounds 19-R and 23-S also
inhibited acetic acid-induced writhing19 when adminis-
tered sc and p.o. with sc ED50 values of 0.53 and
0.75 mg/kg, respectively, and p.o. ED50 values of 1 and
3.9 mg/kg, respectively. The peripheral selectivity of these
compounds will be investigated at a latter time.
8. Ladouceur, G. H.; Connell, R. D.; Baryza, J.; Campbell,
A.-M.; Lease, T. G.; Cook, J. H. WO 99/32475, 1999.
9. The chiral separations were conducted by Chiral Tech-
nology, Inc., Exton, PA.
10. Chiral chromane-2-carboxylic acid: Schutt, H. DE
4430089, 1996.
11. Chiral 2,3-dihydrobenzofuran-2-carboxylic acid: Urban,
F. J.; Moore, B. J. Heterocycl. Chem. 1992, 29, 431.
12. 5-Nitro-2,3-dihydro-benzofuran-2-carboxylic acid methyl
1
ester: H NMR (400 MHz, CDCl3) d: 8.12 (dd, 1H), 8.08
(d, 1H), 6.93 (d, 1H), 5.35 (dd, 1H), 3.82 (s, 3H), 3.62 (dd,
1H), 3.45 (dd, 1H); 7-Nitro-2,3-dihydro-benzofuran-2-
carboxylic acid methyl ester: 1H NMR (400 MHz, CDCl3)
d: 7.92 (d, 1H), 7.43 (d, 1H), 6.98 (t, 1H), 5.45 (dd, 1H),
3.80 (s, 3H), 3.65 (dd, 1H), 3.44 (dd, 1H).
13. Synthesis and use as building block for kappa opioid
receptor agonists of 1-(2-methylamino-(S)-2-phenyl-eth-
yl)-pyrrolidin-(S)-3-ol: Zhang, W. Y.; Maycock, A. L.;
Kumar, V.; Gaul, F.; Chang, A.-C.; Guo, D.
WO00014065, 2000.
14. Mukaiyama coupling reagent mediated amide formation:
Bald, E.; Saigo, K.; Mukaiyama, T. Chem. Lett. 1975, 1,
1163.
15. (a) DeHaven, R. N.; DeHaven-Hudkins, D. L. In Current
Protocols in Pharmacology; Enna, S. J., Williams, M.,
Ferkany, J. W., Kenakin, T., Porsolt, R. D., Sullivan, J.
P., Eds.; John Wiley & Sons: New York, 1998, p 1.4.1; (b)
Raynor, K.; Kong, H.; Chen, Y.; Yasuda, K.; Yu, L.; Bell,
G. I.; Reisine, T. Pharmacological Characterization of the
Cloned j-, d-, and l-Opioid Receptors. Mol. Pharmacol.
1994, 45, 330; (c) All the compounds listed in Tables 1 and
2 were full agonists as determined in a [35S]GTPcS
functional binding assay.
In summary, two novel chemical classes of kappa opioid
receptor agonists, chroman- and 2,3-dihydrobenzofu-
ran-based constrained analogs of the aryloxyacetamides,
were synthesized and found to be potent j receptor li-
gands. Among these, eight compounds had single digit
nanomolar j binding affinity and >100-fold selectivity
over l and d. Chroman-2-carboxamide 19-R and 2,3-
dihydrobenzofuran-2-carboxamide 23-S both demon-
strated analgesic effects in the in vivo formalin-induced
nociception and acetic acid-induced writhing assays.
References and notes
16. Benzofuran-2-carboxamide 27 displays moderate j bind-
ing affinity indicating that saturation at the 2-position in
this series is important for opioid receptor binding affinity.
1. Dhawan, B. N.; Cesselin, F.; Raghubir, R.; Reisine, T.;
Bradely, P. B.; Portoghese, P. S.; Hamon, M. Pharmacol.
Rev. 1996, 48, 567.
2. DeHaven-Hudkins, D. L.; Dolle, R. E. Curr. Pharm. Des.
2004, 10, 743.
3. (a) Szmuszkovicz, J.; Von Voigtlander, P. F. J. Med.
Chem. 1982, 25, 1225; (b) Szmuszkovicz, J. Prog. Drug
Res. 1999, 52, 168; (c) Szmuszkovicz, J. Prog. Drug Res.
1999, 53, 3.
O
O
OH
N
N
27: Ki (κ) = 490 nM;
Ki (µ) > 5 µM; Ki (δ) > 5 µM
4. Costello, G. F.; James, R.; Shaw, J. S.; Slater, A. M.;
Stutchbury, N. C. J. J. Med. Chem. 1991, 34, 181.
5. Kumar, V.; Guo, D.; Cassel, J. A.; Daubert, J. D.;
DeHaven, R. N.; DeHaven-Hudkins, D. L.; Gauntner, E.
K.; Gottshall, S. L.; Greiner, S. L.; Koblish, M.; Little, P.
J.; Mansson, E.; Maycock, A. L. Bioorg. Med. Chem. Lett.
2005, 15, 1091.
6. Tuthill, P. A.; Seida, P. R.; Barker, W.; Cassel, J. A.;
Belanger, S.; DeHaven, R. N.; Koblish, M.; Gottshall, S.
L.; Little, P. J.; DeHaven-Hudkins, D. L.; Dolle, R. E.
Bioorg. Med. Chem. Lett. 2004, 14, 5693.
17. Le Bourdonnec, B.; Ajello, C. W.; Seida, P. R.; Susnow,
R. G.; Cassel, J. A.; Belanger, S.; Stabley, G. J.; DeHaven,
R. N.; DeHaven-Hudkins, D. L.; Dolle, R. E. Bioorg.
Med. Chem. Lett. 2005, 15, 2647.
18. General review of cytochrome P450 enzymes: Nelson, D.
R.; Koymans, L.; Kamataki, T.; Stegeman, J. J.; Feyer-
eisen, R.; Waxman, D. J.; Waterman, M. R.; Gotoh, O.;
Coon, M. J.; Estabrook, R. W.; Gunsalus, I. C.; Nebert,
D. W. Pharmacogenetics 1996, 6, 1.
19. For a description of the in vivo assays, see Ref. 3.