10.1002/anie.201903224
Angewandte Chemie International Edition
COMMUNICATION
[8]
[9]
Y. T. Tam, C. Huang, M. Poellmann, G. S. Kwon, ACS Nano, 2018, 12,
7406-7414 and references therein.
stereocomplex crystal form is the low degradation temperature of
samples obtained from equimolar mixtures of PLLA and PDLA,
which, coupled with the high melting temperature of the
stereocomplex crystal form, reduce the processing temperature
range of this polymer. For this reason, getting highly stereoregular
PLA stereoblocks having high melting and degradation
temperatures represents a highly relevant industrial interest result.
A. Bertin, Macromol. Chem. Phys. 2012, 213, 2329-2352.
[10] a) H. Tsuji, Y. Ikada, Polymer 1999, 40, 6699-6708; b) Y. Jing, C. Quan,
B. Liu, Q. Jiang, C. A. Zhang, Polymer Reviews 2016, 56, 262-286; c) C.
Migliaresi, D. Cohn, D. E. Lollis, L. Fameri, J. Appl. Polym. Sci. 1991, 43,
83–95; d) S. Farah, D. G. Anderson, R. Langer, Adv. Drug Deliv. Rev.
2016, 107, 367-392; e) H. Tsuji, Adv. Drug Deliv. Rev. 2016, 107, 97-
135; f) D.M. Bigg, In Society of Plastics Engineers—Annual Technical
Conference, 541996 2028–2039.
We have reported a new series of iron complexes supported
by readily available tripodal ligands. These iron catalysts are
highly active and stereoselective in mild conditions for the ROP of
lactide. The corresponding versatile systems enable the
production of stereoblock polymers with high molecular weights,
allowing the formation of thermally stable stereocomplexes.
These results suggest a number of new avenues for industrial
applications of PLA stereocomplexes.
[11] (a) B. J. O’Keefe, S. M. Monnier, M. A. Hillmyer, W. B. Tolman, J. Am.
Chem. Soc. 2001, 123, 339−340; (b) B. J. O’Keefe, L. E. Breyfogle, M.
A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc. 2002, 124, 4384−4393;
(c) V. C. Gibson, E. L. Marshall, D. Navarro-Llobet, A. J. P. White, D. J.
Williams, J. Chem. Soc., Dalton Trans. 2002, 23, 4321−4322; (d) C. M.
Manna, H. Z. Kaplan, B. Li, J. A. Byers, Polyhedron 2014, 84, 160−167;
(e) R. Duan, C. Hu, X. Li, X. Pang, Z. Sun, X. Chen, X. Wang,
Macromolecules, 2017, 50, 9188–9195.
[12] M. J.-L. Tschan, J. Guo, S. K. Raman, E. Brulé, T. Roisnel, M.-N. Rager,
R. Legay, G. Durieux, B. Rigaud, C. M. Thomas, Dalton Trans. 2014, 43,
4550-4564.
Acknowledgements
[13] a) J. Guo, P. Haquette, J. Martin, K. Salim, C. M. Thomas, Angew. Chem.
Int. Ed. 2013, 52, 13584-13587; b) C. Robert, T. E. Schmid, V. Richard,
P. Haquette, S. K. Raman, M.-N. Rager, R. M. Gauvin, Y. Morin, X.
Trivelli, V. Guérineau, I. del Rosal, L. Maron, C. M. Thomas, J. Am. Chem.
Soc. 2017, 139, 6217-6225; c) Z. Zheng, G. Zhao, R. Fablet, M. Bouyahyi,
C. M. Thomas, T. Roisnel, O. Casagrande Jr., J.-F. Carpentier, New J.
Chem. 2008, 32, 2279-2291.
CNRS, ENSCP, ANR (grant ANR-10-PDOC-010-01), Fondation
Pierre-Gilles de Gennes, and French Ministry of Research and
Higher Education are thanked for financial support of this work.
Financial support from the TGIR-RMN-THC Fr3050 CNRS for
conducting the research is gratefully acknowledged. The authors
would like to thank Purac for a generous loan of rac-lactide. CMT
is grateful to the Institut Universitaire de France.
[14] a) A. Looney, G. Parkin, R. Alsfasser, M. Ruf, H. Vahrenkamp, Angew.
Chem., Int. Ed. Engl. 1992, 31, 92-93; b) A. Looney, R. Han, K. McNeill,
G. Parkin, J. Am. Chem. Soc. 1993, 115, 4690-4697.
[15] a) A. F. Abdel-Magib, K. G. Carson, B. D. Harris, C. A. Maryanoff, R. D.
Shah, J. Org. Chem. 1996, 61, 3849-3862; b) P. N. Liu, F. H. Su, T. B.
Wen, H. H.-Y. Sung, I. D. Williams, G. Jia, Chem. Eur. J. 2010, 16, 7889-
7897.
Conflict of interest
[16] a) H. Bürger, U. Wannagat, Monatsh. Chem. 1963, 94, 1007-1012; b) D.
C. Bradley, R. G. Copperthwaite, Inorg. Synthesis 1978, 18, 112-120.
[17] R. A. Andersen, K. Faegri Jr., J. C. Green, A. Haaland, M. F. Lappert,
W.-P. Leung, K. Rypdal, Inorg. Chem. 1988, 27, 1782-1786.
[18] H. Ma, T. P. Spaniol, J. Okuda, Dalton Trans. 2003, 4770-4780.
[19] J. Eppinger, M. Spiegler, W. Hieringer, W. A. Herrmann, R. Anwander, J.
Am. Chem. Soc. 2000, 122, 3080-3096.
The authors declare no conflict of interest.
Keywords: iron • homogeneous catalysis • tacticity • polymer
stereocomplex • stereoblock
[1]
R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater. 2000, 12, 1841-
1846.
[20] a) K. A. M. Thakur, R. T. Kean, E. S. Hall, J. J.; Kolstad, T. A. Lindgren,
M. A. Doscotch, J. I. Siepmann, E. J. Munson, Macromolecules 1997, 30,
2422-2428; b) M. H. Chisholm, S. S. Iyer, D. G. McCollum, M. Pagel, U.
Werner-Zwanziger, Macromolecules 1999, 32, 963-973; c) A. Amgoune,
C. M. Thomas, J.‐F. Carpentier, Macromol. Rapid Commun. 2007, 28,
693-697.
[2]
[3]
[4]
M. Vert, Macromol. Symp. 2000, 153, 333-342.
E. Chiellini, R. Solaro, Adv. Mater. 1996, 8, 305-313.
a) O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004,
104, 6147-6176; b) C. M. Thomas, Chem. Soc. Rev. 2010, 39, 165-173.
(c) M. J.-L. Tschan, E. Brulé, P. Haquette, C. M. Thomas, Polym. Chem.
2012, 3, 836-851; d) T. M. Ovitt, G. W. Coates, J. Polym. Sci., Part A:ꢀ
Polym. Chem. 2000, 38, 4686−4692; e) T. M. Ovitt, G. W. Coates, J. Am.
Chem. Soc. 2002, 124, 1316-1326; f) S. Liu, H. Li, N. Zhao, Z. Li, ACS
Macro Lett. 2018, 7, 624-628; g) J. Hu, C. Kan, H. Wang, H. Ma,
Macromolecules 2018, 51, 5304-5312; h) N. Spassky, M. Wisniewski, C.
Pluta, A. Le Borgne, Macromol. Chem. Phys., 1996, 197, 2627-2637; i)
Z. Zhong, P. J. Dijkstra, J. Feijen, Angew. Chem., Int. Ed., 2002, 41,
4510-4513. j) C. P. Radano, G. L. Baker, M. R. Smith, J. Am. Chem. Soc.,
2000, 122, 1552-1553; k) N. Nomura, R. Ishii, M. Akakura, K. Aoi, J. Am.
Chem. Soc., 2002, 124, 5938-5839; l) P. Hormnirun, E. L. Marshall, V. C.
Gibson, A. J. P. White, D. J. Williams, J. Am. Chem. Soc., 2004, 126,
2688-2689.
[21] R. D. Shannon, Acta Cryst. 1976, A32, 751-767.
[22] S. Groysman, I. Goldberg, M. Kol, E. Genizi, Z. Goldschmidt,
Organometallics 2004, 23, 1880-1890.
[23] a) V. Busico, R. Cipullo, N. Friederichs, S. Ronca, G. Talarico, M. To-
grou, B. Wang, Macromolecules 2004, 37, 8201-8203; b) B. L. Small, M.
Brookhart, Macromolecules 1999, 32, 2120-2130.
[24] H. Tsuji, Macromol. Biosci. 2005, 5, 569-597.
[25] a) S. Abbina, G. Du, ACS Macro Lett. 2014, 3, 689-692; b) N. Nomura,
J. Hasegawa, R. Ishii, Macromolecules 2009, 42, 4907-4909; c) Z. Tang,
Y. Yang, X. Pang, J. Hu, X. Chen, N. Hu, X. Jing, J. Appl. Polym. Sci.
2005, 98, 102-108; d) J. Hu, Z. Tang, X. Qiu, Y. Han, Q. Du, X. Chen, X.
Jing, Macromol. Biosci. 2005, 5, 1193-1199; e) A. Stopper, T. Rosen, V.
Venditto, I. Goldberg, M. Kol, Chem. Eur. J. 2017, 23, 11540-11548.
[26] The effect of polymer tacticity on Tg is well-known for poly(methyl-
methacrylate)s. See for instance: J. Biroš, T. Larina, J. Trekoval, J.
Pouchlý, Colloid Polym. Sci. 1982, 260, 27-30.
[5]
[6]
[7]
C. M. Thomas, J.-F. Lutz, Angew. Chem. Int. Ed. 2011, 50, 9244-9246.
M. Saravanan, A. J. Domb, Eur. J. Nanomed. 2013, 5, 81-96.
a) Y. Ikada, K. Jmshidi, H. Tsuji, S.-H. Hyon, Macromolecules 1987, 20,
904-906; b) M. Kakuta, M. Hirahata, Y. J. Kimura, Macromol. Sci. Polym.
Rev. 2009, 49, 107-140; c) L. Cartier, T. Okihara, B. Lotz,
Macromolecules 1997, 30, 6313-6322.
[27] G. L. Baker, E. B. Vogel, M. R. Smith III; Polymer Reviews 2008, 48, 64-
84.
This article is protected by copyright. All rights reserved.