14
J. M. Otero et al. / Tetrahedron: Asymmetry 16 (2005) 11–14
13. (a) Evans, P. A.; Brandt, T. A. J. Org. Chem. 1997, 62,
5321; (b) Bloomer, J.; Zheng, W. Synth. Commun. 1998,
28, 2087.
14. (a) Fleet, G. W. J.; Smith, P. W. Tetrahedron 1987, 43,
971; (b) Funabashi, M.; Kobayashi, K.; Yoshimura, J. J.
Org. Chem. 1979, 44, 1618.
92.7, 103.7, 123.8, 124.0, 126.7, 127.2, 127.8, 128.3, 128.9,
129.4, 129.7, 130.2, 130.1, 141.4, 150.8, 153.8. MS (FAB):
m/z (%) = 469 (5, M+); 133 (100); 91 (25, Bn+); 29 (100).
20
D
Compound 9: ½a ¼ þ26:0 (c 0.10, acetone). 1H NMR
(CD3COCD3): d = 2.64 (s, 1H, OH); 2.80 (s, 1H, OH);
3.57 (dd, 1H, J4a,11b = 9.9 Hz, J1,11b = 7.3 Hz, H-11b);
15. All new compounds gave satisfactory spectroscopical and
analytical data. Selected physical and spectroscopic data
3.73
(ddd,
1H,
J4a,11b = 9.9 Hz,
J4,4a = 7.5 Hz,
J4a,5 = 3.1 Hz, H-4a); 4.36 (d, 1H, JH,OH = 3.4 Hz, OH);
4.63–4.69 (m, 1H, H-2); 4.87 (d, JH,H = 11.7 Hz, CH2Ph);
4.87–4.91 (m, 2H, H-1 + H-4); 5.11 (d, 1H, JH,H = 11.7 Hz,
CH2Ph); 5.17 (d, 1H, J2,3 = 1.3 Hz, H-3); 7.26–7.51 (m,
6H, 6 · Ar–H); 7.68 (td, 1H, JH,H = 7.5 Hz, JH,H = 1.3 Hz,
Ar–H); 7.94–8.03 (m, 2H, 2 · Ar–H); 11.58 (br s, 1H,
NH). 13C NMR (CD3COCD3): d = 42.0, 67.2, 70.6, 71.3,
76.3, 78.4, 85.8, 124.1, 127.2, 129.1, 129.7, 129.9, 130.7,
131.4, 131.9, 134.1, 137.1, 141.4, 157.6, 177.3, 182.9. MS
(FAB): m/z (%) = 407 (1, M+); 390 (5, M+ꢀOH).
20
are as follows. Compound 3a: ½a ¼ ꢀ86:4 (c 1.5, CHCl3).
D
1H NMR (CDCl3): d = 1.29 (s, 3H, CH3); 1.47 (s, 3H,
CH3); 3.79 (s, 3H, OCH3); 3.83 (d, 1H, J3,4 = 2.8 Hz, H-3);
3.93 (s, 3H, OCH3); 4.50 (d, 1H, JH,H = 12.0 Hz, CH2Ph);
4.60 (dd, 1H, J4,5 = 8.0 Hz, J3,4 = 2.8 Hz, H-4); 4.63 (d,
1H, J1,2 = 3.7 Hz, H-2); 4.70–4.74 (m, 1H, H-5); 4.75 (d,
1H, JH,H = 12.0 Hz, CH2Ph); 4.80 (dd, 1H, J6,6 = 12.9 Hz,
J5,6 = 4.3 Hz, H-6); 5.01 (dd, 1H, J6,6 = 12.9 Hz,
J5,6 = 9.6 Hz, H-6); 5.92 (d, 1H, J1,2 = 3.7 Hz, H-1); 6.62
(s, 1H, H-8); 7.33–7.42 (m, 5H, 5 · Ar–H); 7.46 (dd, 1H,
J10,11 = 8.3 Hz, J11,12 = 7.1 Hz, H-11); 7.52 (dd, 1H,
J12,13 = 8.3 Hz, J11,12 = 7.1 Hz, H-12); 8.01 (d, 1H,
J12,13 = 8.3 Hz, H-13); 8.19 (d, 1H, J10,11 = 8.3 Hz, H-
10). 13C NMR (CDCl3): d = 26.1, 26.6, 37.7, 55.5, 62.5,
71.4, 75.7, 79.7, 81.2, 82.0, 102.0, 104.5, 111.7, 122.2,
122.3, 124.1, 125.6, 126.3, 126.7, 127.2, 128.2, 128.4, 128.7,
16. Crystallographic data (excluding structure factors) for the
structure reported in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supple-
mentary publication no. CCDC 254541 3a. Copies of the
data can be obtained free of charge on application to
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK fax:
(+44)1223-336-033; email: deposit@ccdc.cam.ac.uk. Crys-
tallographic data for 3a. C28H31NO8, M = 509.54,
136.9, 148.2, 152.2. MS (CI): m/z (%) = 509 (4, MH+); 420
20
D
(2); 91 (25, Bn+); 29 (100). Compound 5: ½a ¼ þ15:7 (c
T = 293(2) K. Monoclinic, space group
a = 9.7351(10), b = 12.9049(13), c = 11.950(11) A,
a = 90ꢁ, b = 108.266(2)ꢁ, c = 90ꢁ, V = 1323.6(2) A , Dc
(Z = 4) = Ônot measuredÕ. F(000) = 540, absorption coef-
ficient = 0.094 cmꢀ1. Data were obtained on an Enraf-
Nonius CAD4-Mach3 diffractometer (graphite crystal
P 21 with
˚
1
2.00, CHCl3). H NMR (CD3COCD3): d = 3.61 (dd, 1H,
J3,4 = 8.8 Hz, J3,2 = 8.5 Hz, H-3); 3.75 (ddd, 1H,
J1,2 = 9.1 Hz, J2,3 = 9.1 Hz, J2,OH = 4.3 Hz, H-2); 3.91 (s,
3H, OCH3); 3.96–4.06 (m, 1H, H-5); 4.02 (s, 3H, OCH3);
4.09–4.15 (m, 1H, H-4); 4.21 (ddd, 1H, J1,6 = 10.3 Hz,
J1,2 = 9.1 Hz, J1,OH = 4.6 Hz, H-1); 4.45 (d, 1H,
J2,OH = 4.3 Hz, OH-2); 4.75 (d, 1H, J1,OH = 4.6 Hz, OH-
1); 4.95–5.01 (m, 3H, CH2–Ph + OH-4); 5.15 (dd,
1H,J5,6 = 10.7 Hz, J1,6 = 10.3 Hz, H-6); 7.21 (s, 1H, H-8);
7.24–7.35 (m, 3H, 3 · Ar–H); 7.40–7.58 (m, 4H, 4 · Ar–
H); 7.99–8.19 (m, 2H, 2 · Ar–H). 13C NMR (CD3
COCD3): d = 45.4, 57.1, 64.0, 75.0, 76.0, 76.3, 76.4, 86.9,
3
˚
˚
monochromator, k = 1.5418 A) using the x = 2h scan
method; absorption corrections were applied. Refinement,
with anisotropic displacement parameters applied to each
of the non-hydrogen atoms, was by full-matrix least
squares on F2 (SHELXL-93) using all data; w2R =
[(Rw(Fo ꢀFc ) /Rw (Fo2)2]1/2
.
17. Gould, S. J. Chem. Rev. 1997, 97, 2499–2509.
2
2 2