alcohol through alkene isomerization has been reported,3 its
synthetic scope as well as explicit mechanism have not been
clarified. We now demonstrate that the current strategy
provides a powerful route for varieties of tri- and tetrasub-
stituted alkenes with defined stereochemistry.4,5
Table 1. Synthesis of Tri- and Tetrasubstituted Alkenylsilanesa
Our initial finding for the stereoselective synthesis of
multisubstituted alkenes was obtained when E-1a (R1 ) R3
) R4 ) Ph, R2 ) H, 96% E)5b was treated with butyllithium
(1.1 equiv) in THF at -72 to 0 °C for 0.5 h (Scheme 2).6
Scheme 2
After usual hydrolytic workup, we isolated alkenylsilane
(Z)-2a as an exclusive isomer in almost quantitative yield
(Table 1, entry 1). The structure of 1a and 2a was confirmed
by X-ray crystallographic analysis5b and by NMR analysis
based on NOE, respectively, revealing that olefin isomer-
ization as well as silicon migration from oxygen to carbon
took place. As transmetalation from tellurium to lithium takes
place with retention of stereochemistry through a hypervalent
tellurium intermediate,7 the result could be explained by the
initial formation of (Z)-alkenyllithium (Z)-3, which subse-
quently isomerized to the (E)-isomer,8 followed by the silicon
(3) (a) Gais, H.-J.; Mu¨ller, H.; Decker, J.; Hainz, R. Tetrahedron Lett.
1995, 36, 7433. (b) Marumoto, S.; Kuwajima, I. J. Am. Chem. Soc. 1993,
115, 9021.
(4) Recent representative example for tri- and tetrasubstituted alkenes.
(a) Itami, K.; Mineno, M.; Muraoka, N.; Yoshida, J. J. Am. Chem. Soc.
2004, 126, 11778. (b) Carbometalation route: Kennedy, J. W.; Hall, D. G.
J. Am. Chem. Soc. 2002, 124, 898. (c) Itami, K.; Nokami, T.; Ishimura, Y.;
Matsudo, T.; Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 11577.
(d) Yamanoi, S.; Seki, K.; Matsumono, T.; Suzuki, K. J. Organomet. Chem.
2001, 624, 143. (e) Takahashi, T.; Xi, C.; Ura, Y.; Nakajima, K. J. Am.
Chem. Soc. 2000, 122, 3228. (f) Shirakawa, E.; Yamasaki, K.; Yoshida,
H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 10221. (g) Urabe, H.; Hamada,
T.; Sato, F. J. Am. Chem. Soc. 1999, 121, 2931. (h) Ramachandran, P. V.;
Reddy, M. V. R.; Rudd, M. T.; Tetrahedron Lett. 1999, 40, 627. (i)
Stu¨demann, T.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1997, 36, 93. (j)
Ikeda, S.; Kondo, K.; Sato, Y. J. Org. Chem. 1996, 61, 8248. (k) Brown,
S. D.; Armstrong, A. W. J. Am. Chem. Soc. 1996, 118, 6331. (l) Wittig
reaction route: Denmark, S. E.; Amburgey, J. J. Am. Chem. Soc. 1993,
115, 10386. (m) Other routes: Shindo, M.; Matsumoto, K.; Mori, S.;
Shishido, K. J. Am. Chem. Soc. 2002, 124, 6840.
(5) Our interest in organotellurium compounds in organic synthesis: (a)
Yamago, S. Synlett 2004, 1875, and references therein. (b) Yamago, S.;
Miyoshi, M.; Miyazoe, H.; Yoshida, J. Angew. Chem., Int. Ed. 2002, 41,
1407. (c) Yamago, S.; Kokubo, K.; Hara, O.; Masuda, S.; Yoshida, J. J.
Org. Chem. 2002, 67, 8584.
(6) (a) Seebach, D.; Beck, A. K. Chem. Ber. 1975, 108, 314. (b) Luppold,
E.; Mu¨ller, E.; Winter, W. Z. Naturforsch. 1976, 31b, 1654. (c) Hirao, T.;
Kambe, N.; Ogawa, A.; Miyoshi, M.; Murai, S.; Sonoda, N. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 1187. (d) Ogawa, A.; Tsuboi, Y.; Yokoyama, K.;
Ryu, I.; Sonoda, N. J. Org. Chem. 1994, 59, 1600.
a Butyllithium (1.1-1.2 equiv) was added to a THF solution of 1 (ca.
0.5 M solution) at -72 °C, and the resulting solution was slowly warmed
to 0 °C over 0.5 h. b Performed with 2.2 equiv of buthyllithium.
migration from oxygen to carbon to 4 (Scheme 2).9 Trans-
metalation to the corresponding alkenylcopper species by
10
the reaction of 1a with Me2Cu(CN)Li2 or Me2CuLi
(8) (a) Wardell, J. L. In ComprehensiVe Organometallic Chemistry;
Wilkinson, G., Stones, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford,
UK, 1982; Vol. 1, pp 42-120. (b) Bauer, W.; Feigel, M.; Mu¨ller, G.;
Schleyer, P. R. J. Am. Chem. Soc. 1988, 110, 6033. (c) Knorr, R.; von
Roman, T. Angew. Chem., Int. Ed. Engl. 1984, 23, 366. (d) Zweifel, G.;
Murray, R. E.; On, H. P. J. Org. Chem. 1981, 46, 1292. (e) Knorr, R.;
Lattke, E. Tetrahedron Lett. 1977, 45, 3969. (f) Panek, B. L.; Neff, E. J.;
Chu, H.; Panek, M. G. J. Am. Chem. Soc. 1975, 97, 3996.
(7) . (a) Reich, H. J.; Bevan, M. J.; Gudmundsson, B. O¨ .; Puckett, C. L.
Angew. Chem., Int. Ed. 2002, 41, 3436. (b) Reich, H. J.; Green, D. P.;
Phillips, N. H. J. Am. Chem. Soc. 1991, 113, 1414. See also ref 6d.
(9) (a) Kim, K. D.; Magriotis, P. A. Tetrahedron Lett. 1990, 31, 6137.
(b) Lautens, M.; Delanghe, P. H. M.; Goh, J. B.; Zhang, C. H. J. Org.
Chem. 1995, 60, 4213.
910
Org. Lett., Vol. 7, No. 5, 2005