aza-Baylis−Hillman Reaction of N-Sulfonated Imines
A R T I C L E S
Table 1. aza-Baylis-Hillman Reactions of
N-(4-chlorobenzylidene)-4-methylbenzenesulfonamide 1e (1.0
equiv) with Methyl Vinyl Ketone (3.0 equiv) in the Presence of
Chiral Lewis Base LB1 (10 mol %)
absolute
entry
solvent
temp/
°
C
time/h
yield/%a/2e
ee/%
configuration
1
2
3
4
5
6
7
8
9
THF
THF
THF
THF
CH2Cl2
toluene
MeCN
Et2O
DMF
MeOH
20
10
0
-30
10
10
10
10
10
12
12
48
48
12
24
24
12
12
24
86
76
84
72
38
17
38
76
63
20b
84
88
90
94
82
67
70
80
74
-
S
S
S
S
S
S
S
S
S
-
Figure 1. Structures of chiral Lewis bases.
10
10
Hillman reaction of N-sulfonated imines 1 with MVK utilizing
a chiral nitrogen Lewis base [4-(3-ethyl-4-oxa-1-azatricyclo-
[4,4,0,03,8]dec-5-yl)-quinolin-6-ol: â-ICD2a,7] (Figure 1) to
achieve >90% ee in good yield.6d This is the first case in which
high ee (>90%) can be realized using the simple Michael
acceptor MVK. The structure of this nitrogen Lewis base such
as the phenolic hydroxy group plays a significant role in this
reaction for achieving high ee.2c,6d Currently, the exploration
of a novel and highly efficient chiral Lewis base for catalytic,
asymmetric Baylis-Hillman reaction is a very attractive and
competitive field. Therefore, we attempted to seek out a chiral
a Isolated yields. b Michael addition product derived from methanol to
2e was obtained at the same time (Supporting Information).
phosphine Lewis base for this reaction since a phosphine Lewis
base such as PPh3 is also an effective promoter for this
reaction.6b After screening several chiral phosphine Lewis base
catalysts, we found that (R)-2′-diphenylphosphanyl-[1,1′]bi-
naphthalenyl-2-ol LB1, having a phenolic hydroxy group, is
also an effective chiral phosphine Lewis base for the catalytic,
asymmetric aza-Baylis-Hillman reaction in which high enan-
tioselectivities (94% ee) can also be realized (Figure 1). The
preliminary result has already been communicated.8 Herein, the
full details on the scope and limitations and the mechanistic
insight of this catalytic, asymmetric aza-Baylis-Hillman reac-
tion are described. On the basis of these results, exploration of
a chiral phosphine Lewis base for R,â-unsaturated cyclic ketone
is also reported.
(3) Other references related to asymmetric Baylis-Hillman reaction: (a) Li,
G.-G.; Hook, J. D.; Wei, H.-X. Org. Bioorg. Chem. 2001, 49-61. (b) Fox,
D. J.; Medlock, J. A.; Vosser, R.; Warren, S. J. Chem. Soc., Perkin Trans
1
2001, 2240-2249. (c) Iwabuchi, Y.; Furukawa, M.; Esumi, T.;
Hatakeyama, S. Chem. Commun. 2001, 2030-2031. (d) Bauer, T.; Tarasiuk,
J. Tetrahedron: Asymmetry 2001, 12, 1741-1745. (e) Radha, K. P.;
Kannan, V.; Ilangovan, A.; Sharma, G. V. M. Tetrahedron: Asymmetry
2001, 12, 829-837. (f) Li, G.-G.; Wei, H.-X.; Phelps, B. S.; Purkiss, D.
W.; Kim, S. H. Org. Lett. 2001, 3, 823-826. (g) Alcaide, B.; Almendros,
P.; Aragoncillo, C. J. Org. Chem. 2001, 66, 1612-1620. (h) Jauch, J. J.
Org. Chem. 2001, 66, 609-611. (i) Suzuki, D.; Urabe, H.; Sato, F. Angew.
Chem., Int. Ed. 2000, 39, 3290-3292. (j) Alcaide, B.; Almendros, P.;
Aragoncillo, C. Tetrahedron Lett. 1999, 40, 7537-7540. (k) Evans, M.
D.; Kaye, P. T. Synth. Commun. 1999, 29, 2137-2146. (l) Kataoka, T.;
Iwama, T.; Tsujiyama, S.-i.; Kanematsu, K.; Iwamura, T.; Watanabe, S.-i.
Chem. Lett. 1999, 257-258. (m) Bocknack, B. M.; Wang, L.-C.; Krische,
M. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5421-5424 and references
therein. (n) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem.
Soc. 2004, 126, 4664-4668. (o) Jellerichs, B. G.; Kong, J.-R.; Krische,
M. J. J. Am. Chem. Soc. 2003, 125, 7758-7759. (p) Cauble, D. F.; Gipson,
J. D.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 1110-1111.
Results and Discussion
1. The aza-Baylis-Hillman Reaction of N-Sulfonated
Imines 1 with MVK Catalyzed by a Chiral Phosphine Lewis
Base LB1. Concerning the chiral phosphine Lewis bases, we
selected LB1 as a chiral Lewis base for this reaction because it
has a phenolic OH group similar to the chiral nitrogen Lewis
base â-ICD (Figure 1).2a We first used MVK as the Michael
acceptor for the aza-Baylis-Hillman reaction with N-(4-
chlorobenzylidene)-4-methylbenzenesulfonamide 1e to develop
the optimal reaction conditions. The results are summarized in
Table 1. We were delighted to find that in this aza-Baylis-
Hillman reaction, high enantiomeric excess (∼80-90% ee) of
the corresponding aza-Baylis-Hillman adduct 2e with S con-
figuration8 can be achieved in good yields in tetrahydrofuran
(THF), ether (Et2O), or dichloromethane (CH2Cl2) at ∼0-20
°C (room temperature) (Table 1, entries 1, 2, 3, 5, and 8). The
coexistence of Lewis acid [Ti(OPri)4] (10 mol %) did not
improve the chemical yield and the ee of 2e (see Supporting
Information). At lower temperature (-30 °C), the ee of 2e can
reach 94% in 72% yield (Table 1, entry 4). When the reactions
were carried out in toluene, acetonitrile (MeCN), or N,N-
dimethylformamide (DMF), the corresponding aza-Baylis-
Hillman adduct 2e was obtained in lower ee and lower yields
(4) (a) Baylis, A. B.; Hillman, M. E. D. Ger. Offen. 1972, 2,155,113; Chem.
Abstr. 1972, 77, 34174q; Hillman, M. E. D.; Baylis, A. B. U.S. Patent
1973, 3,743,669. (b) Morita, K.-I.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc.
Jpn. 1968, 41, 2815-2819.
(5) (a) Shi, M.; Jiang, J.-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397-2400. (b)
Shi, M.; Feng, Y.-S. J. Org. Chem. 2001, 66, 406-411. (c) Shi, M.; Li,
C.-Q.; Jiang, J.-K. Chem. Commun. 2001, 833-834.
(6) (a) Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876-1877. (b) Shi, M.;
Xu, Y.-M. Eur. J. Org. Chem. 2002, 696-701. (c) Shi, M.; Xu, Y.-M.;
Zhao, G.-L.; Wu, X.-F. Eur. J. Org. Chem. 2002, 3666-3679. (d) Shi,
M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4507-4510. (e) Xu, Y.-
M.; Shi, M. J. Org. Chem. 2004, 69, 417-425. (f) Shi, M.; Xu, Y. M. J.
Org. Chem. 2003, 68, 4784-4790. (g) Zhao, G.-L.; Huang, J.-W.; Shi, M.
Org. Lett. 2003, 5, 4737-4739. For reports related to the aza-Baylis-
Hillman reaction of methyl acrylate with N-sulfonated imines, please see:
(h) Perlmutter, P.; Teo, C. C. Tetrahedron Lett. 1984, 25, 5951-5952. (i)
Takagi, M.; Yamamoto, K. Tetrahedron 1991, 47, 8869-8882. For reports
related to the aza-Baylis-Hillman reaction of MVK with N-sulfonated
imine generated in situ, please see: (j) Bertenshow, S.; Kahn, M.
Tetrahedron Lett. 1989, 30, 2731-2732. (k) Balan, D.; Adolfsson, H. J.
Org. Chem. 2002, 67, 2329-2334 and references therein.
(7) The catalyst â-ICD was first prepared by Prof. Hoffman: von Riesen, C.;
Jones, P. G.; Hoffmann, H. M. R. Chem.-Eur. J. 1996, 2, 673-679.
(8) Shi, M.; Chen, L. H. Chem. Commun. 2003, 1310-1311.
9
J. AM. CHEM. SOC. VOL. 127, NO. 11, 2005 3791